Earraghail Renewable Energy Development on behalf of ScottishPower Renewables Technical Appendix 8.4: Bats

CONTENTS

1	INTRODUCTION	1
1.2	Site Overview	1
2	METHODOLOGY	2
2.2	Desk Study	2
2.3	Field Surveys	2
2.4	Limitations	8
3	RESULTS	10
3.1	Desk Study	.10
3.2	Field Surveys	.11
4	DISCUSSION AND CONCLUSIONS	21
4.1	Desk Study	.21
4.2	Field Surveys	.21
5	ASSESSMENT OF THE POTENTIAL RISKS TO BATS	23
5.1	Stage 1 – Initial Site Risk Assessment	.23
5.2	Stage 2 – Overall Risk Assessment	.24
6	REFERENCES	1

ANNEXES

- Annex 1: Bat Scientific Names
- Annex 2: Bat Activity Survey Effort
- Annex 3: Existing Bat Species Recorded Highland Biological Recording Group
- Annex 4: Photographic Plates
- Annex 5: Weather Data for Bat Activity Survey Effort
- Annex 6: Ecobat Output Report

1 INTRODUCTION

- 1.1.1 This Technical Appendix has been prepared to accompany **Chapter 8** of ScottishPower Renewables' (SPR) Earraghail Renewable Energy Development (hereafter 'the proposed Development') Environmental Impact Assessment (EIA) Report.
- 1.1.2 It presents detailed methodologies and results of desk studies and field surveys completed to establish baseline conditions with regards to bat species, in order to inform the design and assessment of the proposed Development.
- 1.1.3 It should be read with reference to the following specific figures, presented in Volume 3 of the EIA Report:
 - Figure 8.1 Designated Sites for Nature Conservation;
 - Figure 8.6 Bat Activity Survey Plan; and
 - Figure 8.7 Bat Roost Survey Plan.
- 1.1.4 Only common species names are referred to within the main text of this Appendix. **Annex 1** provides a summary of all bat species referred to herein, within **Chapter 8** of the EIA Report and all other associated appendices and figures.

1.2 Site Overview

- 1.2.1 The location of the proposed Development, as shown by the application boundary in **Figure 8.1, 8.6** and **8.7** and hereafter referred to as the 'Site', is centred at NR 88596 63376 and lies within the Forestry and Land Scotland (FLS) forests of Skipness and Corranbuie, Kintyre, Argyll (see **Figure 8.1**).
- 1.2.2 The Site is predominantly comprised of commercial coniferous woodland of varying heights and maturity, with the centre 'open' part of the Site supporting areas of wet modified bog and dry heath. The Site is intersected by a number of watercourses and supports a number of lochans; the larger of which include Loch na Machrach Bige and Loch na Machrach Moire.
- 1.2.3 The surrounding wider area includes similar commercial forestry plantations, and larger expanses of open moorland to the west.
- 1.2.4 The Site has not been subject to any previous investigations for a potential large-scale renewable energy development. There have been investigations into wind farm developments in the surrounding area including the 'Cnoc an Fhionn' Wind Farm located immediately to the west, but none of these have been progressed into any publicly available planning consultation or submission. An operational hydro-power scheme is located along the Abhainn Achachoish.
- 1.2.5 The consented and currently under construction Inveraray to Crossaig Overhead Power Line also crosses the proposed access track to the Site, to the west.
- 1.2.6 A Phase 1 habitat plan for the Site is provided as Figure 8.4 of the EIA Report, with further details of baseline habitat conditions within the Site provided in Technical Appendix 8.3, presented in Volume 4 of the EIA Report.

2 METHODOLOGY

- 2.1.1 The approach to baseline information gathering with regards to bats has been undertaken with reference to Collins guidance (2016) and NatureScot (formerly Scottish Natural Heritage (SNH)) guidance (SNH, 2019).
- 2.1.2 Additional pieces of guidance and peer reviewed literature are also referenced where relevant.

2.2 Desk Study

- 2.2.1 A desk study was undertaken to inform the approach to field survey work and provide context for subsequent assessment.
- 2.2.2 The desk study has included a review of:
 - Aerial imagery and Ordnance Survey (OS) maps to identify any features of potential value to foraging, commuting or roosting bats;
 - A review of SiteLink¹ to identify the proximity of the Site to any national or internationally designated sites for nature conservation, with bat qualifying interests;
 - A review of existing bat records within 10 km of the Site, including species and roost records, obtained from the following key sources;
 - Records request to the Argyll Biological Records Centre (ABReC) via Highland Biological Recording Group (HBRG); and
 - Sheirdrim Renewable Energy Development EIA Technical Appendix 8.3 (Arcus, 2018).
 - A review of the Site's location in relation to species known ranges in Scotland, with reference to the most recent UK Habitats Directive² Article 17 Report, based on Mathews *et al.* (2018)³; and
 - The location of other wind farm developments, including the number of turbines and their size within 10 km of the Site.

2.3 Field Surveys

- 2.3.1 The purpose of baseline field surveys for bats has been to establish the bat species assemblage using the Site, the spatial and temporal distribution of bat activity within the Site, the location and extent of commuting and foraging habitat used by bats and, the locations of any maternity roosts and/or any significant hibernation or swarming sites that could potentially be affected by the proposed Development.
- 2.3.2 Surveys were undertaken between July 2019 and September 2020, consisting of a habitat assessment, roost surveys and ground-level static surveys.

Earraghail Renewable Energy Development

¹<u>https://sitelink.nature.scot/home</u> [Accessed April 2021].

²Council Directive 92/43/EEC.

³<u>https://jncc.gov.uk/our-work/article-17-habitats-directive-report-2019-species/#regularly-occurring-species-vertebrate-species-mammals-terrestrial</u> [Accessed April 2021].

Habitat Assessment

- 2.3.3 An initial habitat assessment of the Site, focusing upon habitats within 200 m of proposed turbine locations, was undertaken in July 2019 to appraise the potential value of habitats present for commuting and foraging bats, in accordance with NatureScot guidance (2019) and using the criteria detailed within Table 4.1 of Collins guidance (2016).
- 2.3.4 The assessment was informed by a review of aerial imagery and comprised a daylight walkover of potentially suitable habitat features. The assessment was undertaken by Mr L. Carroll and Mr M. Wood, both suitably competent ecologists with considerable experience of undertaking bat roost habitat appraisals.
- 2.3.5 The assessment was subsequently updated by a Preliminary Roost Assessment (PRA) undertaken in September 2020.

Roost Surveys

Preliminary Roost Assessment (PRA)

- 2.3.6 Features with the potential to support maternity roosts and significant hibernation and/or swarming sites within 200 m of the application boundary, plus the candidate turbine rotor radius (77.5 m), were identified through a review of aerial imagery and the preliminary habitat assessment.
- 2.3.7 This identified four single, or collections of, stone structures as shown within Figure 8.7:
 - Altagalvash NR 91712 60971 (located to the south of the Site);
 - Glenskible NR 88977 60218 (located to the west of the Site);
 - Lagganroaig NR 90778 64169 (located to the east of the Site); and
 - Croit Bagh NR 91561 61533 (located within the south east part of the Site).
- 2.3.8 A daylight, ground-level preliminary roost assessment in accordance with NatureScot guidance (2019) following the criteria detailed within Collins guidance (2016), was therefore undertaken in September 2020 by Mr M. Wood an experienced bat surveyor, with extensive experience in undertaking PRAs.

Ground-level Static Surveys

- 2.3.9 Ground-level static surveys were undertaken in the spring (April to May), summer (June to mid-August) and autumn (mid-August to October) bat activity periods in accordance with NatureScot guidance (SNH, 2019).
- 2.3.10 The summer and autumn surveys were completed in 2019 by Gavia Environmental Ltd whilst the spring 2020 survey was undertaken by Avian Ecology Ltd.
- 2.3.11 The survey methodology employed the use of automated monitoring stations (MSs), each consisting of either an 'Anabat Swift' (2019 surveys) or a 'Song Meter SM4 Acoustic Recorder' (2020 surveys) full spectrum detectors, fitted with a single omnidirectional microphone and attached to a 1 m high wooden stake.
- 2.3.12 Detectors were programmed to commence recording approximately 30 minutes before sunset and finish recording half an hour after sunrise, with all stations set up to record simultaneously with the same settings, to allow comparison of activity recorded across the Site for the same monitoring period.

- 2.3.13 Detectors were deployed at the onset of an appropriate weather window for bat activity i.e. forecast temperatures of >8°C (at dusk), maximum ground level wind speeds of 5m/s and no, or only very light, rainfall.
- 2.3.14 A total of 10 detectors were deployed in the same locations across the 2019 and 2020 surveys. At the time of the surveys a final turbine layout was not available and therefore the locations of detectors were focused in parts of the Site where turbines were most likely to be located (since confirmed that 14 turbines will form the proposed Development). Placement also considered minimum mitigation requirements for bats, including habitat feature setback distances, as outlined within current NatureScot guidance (SNH, 2019), whilst ensuring a representative sampling of activity within different habitat types of potential interest to bats within the Site was obtained.
- 2.3.15 Recording periods are summarised within **Table 2.3**. Detailed survey effort is presented in **Annex 2**.

Monitoring		No. of Successful Recording Nights				Lincor Footuro within	
Station Ref. (Figure 8.7)	Grid Ref.	Summer 2019⁴	Autumn 2019⁵	Spring 2020 ⁶	Habitat Summary	50 m	
MS7	NR8751964079	46	32	0	Wet modified bog with flush and spring habitats and parcels of dry dwarf shrub heath	None	
MS9	NR8782063301	46	32	0	Wet modified bog with flush and spring habitats and parcels of dry dwarf shrub heath	None	
MS11	NR8838662269	46	0	0	Coniferous plantation	None	
MS12	NR8925263401	46	32	31	Coniferous plantation	Woodland edge	
MS13	NR8892262789	46	32	31	Coniferous plantation	Woodland edge	
MS16	NR8955162703	46	32	31	Coniferous plantation	Woodland edge	
MS17	NR8949761598	46	0	31	Bracken with adjacent acid grassland and wet modified bog	None	
MS18	NR9085461069	46	32	30	Coniferous plantation	Woodland edge	
MS19	NR9062962206	46	32	30	Coniferous plantation with some areas recently felled	Woodland edge	
MS20	NR8961961926	46	32	30	Coniferous plantation with adjacent wet modified bog habitat	None	

Table 2.3: Monitoring station (MS) recording period summary.

⁴ Detectors deployed for 46 nights in total in Summer 2019

⁵ Detectors deployed for 32 nights in total in Autumn 2019

⁶ Detectors deployed for 31 nights in total in Spring 2020

Earraghail Renewable Energy Development

Technical Appendix 8.4: Bats

Bat Data Analysis

- 2.3.16 Sonogram analysis of the summer and autumn 2019 survey periods was undertaken by Gavia Environmental Ltd using Anabat Insight software.
- 2.3.17 Sonogram analysis of spring 2020 was undertaken by Avian Ecology Ltd. using Kaleidoscope Software.
- 2.3.18 Analysis and interpretation of bat activity has followed principles presented within Collins (2016) and NatureScot (SNH, 2019) guidance.

Ecobat Tool

2.3.19 In accordance with NatureScot guidance (SNH, 2019), the *Ecobat* tool (**Box 1**) was used to provide an objective interpretation of the relative importance of bat activity levels recorded within the Site.

Box 1: *Ecobat* Tool

Ecobat is a secure online tool initially designed by the University of Exeter and now hosted and developed by the Mammal Society (Lintott *et al.*, 2018).

The *Ecobat* tool compares baseline bat activity data collected for a site, with bat survey information collected from similar areas (i.e. the 'reference range') at the same time of year. It then provides a percentile rank for each species and a numerical representation of activity levels recorded at a Site, relative to the surrounding landscape for each night of surveying.

Percentiles can then be assigned to activity categories (low, moderate, high) to provide a quantifiable and objective measure of bat activity (**Table 2.4**), rather than relying on professional judgment alone.

It should be noted that the online tool remains limited by the amount of data in the database on a locational basis; and therefore, the results should be regarded as indicative rather than conclusive evidence of the importance of a site for bats.

- 2.3.20 Relative levels of activity are determined by *Ecobat* by comparison to a reference data set, the 'reference range'. A reference range of at least 200 is recommended. When uploading data into the *Ecobat* Tool, the reference range was stratified to only include the following records from the reference data set:
 - Only records from within 30 days of the survey date; and
 - Only records from within 100 km² of the survey location.

2.3.21 Records of each species included within the reference range for comparison included:

- Common pipistrelle 1,096 records;
- Soprano pipistrelle 1,567 records;
- Pipistrellus spp 1,776 records;
- Brown long-eared 43 records; and
- Myotis spp 536 records.
- 2.3.22 For each night where bat activity was recorded, the *Ecobat* tool reports the percentile and associated confidence limits of the night of data against the reference range. **Table 2.4** presents the percentile and associated bat activity category, replicated from NatureScot guidance (SNH, 2019).

Percentile	Bat Activity Category
81 to 100	High
61 to 80	Moderate to High
41 to 60	Moderate
21 to 40	Low to Moderate
0 to 20	Low

Table 2.4: Percentile scope and categorised level of bat activity.

Assessing Potential Risk

- 2.3.23 In accordance with NatureScot guidance (SNH, 2019), a risk assessment has been carried out to identify the potential risk to bat populations. Wind farm developments can impact upon bat species as a result of:
 - Collision mortality, barotrauma and other injuries (although it is important to consider these in the context of other forms of anthropogenic mortality);
 - Loss or damage to commuting and foraging habitat, (wind turbines may form barriers to commuting or seasonal movements, and can result in severance of foraging habitat);
 - Loss of, or damage or disturbance to, roosts; and
 - Displacement of individuals or populations (due to wind turbine construction or because bats avoid the wind turbine areas).
- 2.3.24 To ensure that bat species are protected by minimising the risk of collision, NatureScot guidance (SNH, 2019) advises that an assessment of impact for a proposed renewable energy development requires a detailed appraisal of:
 - The level of activity of all bat species recorded at a site, assessed both spatially and temporally;
 - The risk of wind turbine related mortality for all bat species recorded at a site during bat activity surveys; and
 - The effect on the species' population status if predicted impacts are not mitigated.
- 2.3.25 NatureScot guidance (SNH, 2019) presents a two-stage process for assessing the potential risk to bats as a result of onshore wind turbine developments:
 - Stage 1 gives an indication of the potential risk level of a site, based on a consideration of habitat and development-related features; and
 - Stage 2 uses the output of Stage 1 (i.e. the potential risk level of a site) to provide an overall risk assessment based on the activity level of high collision risk species.
- 2.3.26 The assessment is intended to assist in the identification of those developments which are of greatest concern in terms of potential collision risks at the population level and inform the potential requirements for mitigation.

2.4 Limitations

Field Surveys

- 2.4.1 The original site extent considered during bat surveys was more extensive than the current application boundary, with the southern boundary extending out by approximately 1 km to include a larger area of commercial conifer plantation. The previous boundary in the north extended out to a maximum of approximately 2 km to the west from the access track, and the eastern extreme included Tarbert Wood Special Area of Conservation (SAC) and Tarbert to Skipness Coast Site of Special Scientific Interest (SSSI). The Site was subsequently reduced to the application boundary as shown in Figures 8.1, 8.6 and 8.7. Although the application boundary has altered over the course of the survey period (reduced in extent in June 2021), the study areas for all bat surveys were covered, given the application boundary was at its greatest extent when these were undertaken.
- 2.4.2 A total of 10 detectors were deployed in the same locations across the 2019 and 2020 surveys. At the time of the surveys a final wind turbine number and layout was not available and therefore the locations of detectors were focused in parts of the Site where turbines were most likely to be located. It has since been confirmed that 14 turbines will form the proposed Development. As such, individual turbine locations have not been surveyed but the area covered is considered to be representative of the turbine locations and so sufficient to inform the assessment.
- 2.4.3 Due to unforeseen detector malfunctions, bat activity data captured at MS11 and MS17 during the autumn 2019 survey could not be retrieved. The isolated nature and rough terrain of the Site coupled with poor autumnal weather conditions following the survey meant that it was not possible to redeploy these detectors in autumn 2019. Failures were also encountered at MS7, MS9 and MS11 during the spring 2020 survey and no bat data could be retrieved. Due to the Covid-19 restrictions in 2020, it was not possible to re-deploy these detectors to record during the same survey window.
- 2.4.4 Due to Covid-19 restrictions on movement applicable at the time of survey commencement, detectors were deployed at the earliest and safest possible opportunity during the spring activity period, on the 15th May 2020.
- 2.4.5 Given the deployment lengths of 46, 32 and 31 days (summer and autumn 2019 and spring 2020 respectively), NatureScot guidance (SNH, 2019) requirements of a minimum of *10 consecutive* monitoring nights for each of the activity periods, was far exceeded at the minimum number of monitoring stations required for the proposed Development and therefore, the survey constraints outlined above are not considered to be a significant limitation.
- 2.4.6 Due to an unforeseen weather station malfunction it was not possible to retrieve the weather data for the spring 2020 survey. Instead, the weather data for this static deployment period was obtained from the Time and Date website⁷. This is not considered to represent a significant limitation to the data.

Sonogram Analysis

2.4.7 Analysing bat sonograms using Kaleidoscope can clearly identify certain species. However, some genus groups (such as *Myotis* spp.) can be difficult to determine the specific species due to their similar styles of calls. In addition, it can be difficult to determine species or even genus in some circumstances, due to partial calls being heard or due to distortion from, for example passing cars, rain or wind. In cases when it is not possible to identify a bat call to genus, it is labelled as an unknown bat. If the genus can be identified but not the species, the call is labelled by the genus group only.

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

⁷ <u>https://www.timeanddate.com/weather/</u> [Accessed August 2020].

2.4.8 The detectability of some bat species, such as brown long-eared, is lower than that of, for example, noctule and pipistrelle. The echolocation calls of brown long-eared are comparatively more difficult to detect with bat detectors, and their particular hunting strategies take them into less open habitats, where survey transect routes may not venture. Careful interpretation has been applied when comparing survey results across species.

Ecobat Tool

- 2.4.9 The *Ecobat* tool remains is in its infancy, and naturally there are fewer data in the reference range, reducing the confidence in the assigned category. The tool does, however, provide a guide for discussion along with Site-specific circumstances (e.g. habitats present, desk study information) and its use is advised in accordance with NatureScot guidance (SNH, 2019).
- 2.4.10 The data within the reference range used to compare activity levels between Site data and other records within 100 km² is likely to be have been obtained from surveys undertaken at proposed or operational wind farm sites. Thus, most of the records are likely to be from low value habitats (upland, exposed commercial forestry) compared to habitats of greater value (such as those detailed in Table 3a of NatureScot guidance (SNH, 2019) and listed under 'High'). This may explain why low levels of bat passes recorded have resulted in a higher level of activity (e.g. *Pipistrellus* species were recorded on 22 nights out of a possible 930, but activity level was considered to be high).
- 2.4.11 The reference range used for brown long-eared bats is below the recommended range of 200 and therefore confidence is reduced.
- 2.4.12 The *Ecobat* tool does not include nights where zero bat activity has been recorded and this can result in some data bias.

3 **RESULTS**

3.1 Desk Study

Statutory Designated Sites for Nature Conservation

- 3.1.1 In review of Sitelink, the Site is not located within 10km of any national or internationally designated site for nature conservation, with bat qualifying interests.
- 3.1.2 In consultation with HBRG, no non-statutory designated sites for nature conservation with bat interests are located within 2 km of the Site.

Existing Bat Records

<u>HBRG</u>

- 3.1.3 HBRG returned a total of 2 bat records from 2014 from within 10km of the Site. Records were attributable to common pipistrelle and Natterer's bat with further details provided in **Annex 3**.
- 3.1.4 In review, no specific roost records were returned, with all records considered to comprise species observations, including bat detector passes.

Other Renewable Energy Development (RED) EIA Documentation

3.1.5 A summary of existing bat records identified in a review of EIA documentation for Sheirdrim Renewable Energy Development, located *c*.8km south west of the Site, is provided in **Table 3.1**.

 Table 3.1: Existing records of bat species – adjacent wind farm EIA documentation.

RED	Summary
Sheirdrim 19/02424/S36	Baseline bat surveys were undertaken between May and September 2018, comprising remote static surveys. Bat activity recorded was attributable to common pipistrelle, soprano pipistrelle, Nathusius' pipistrelle, Leisler's bat, brown long-eared bat, <i>Myotis</i> species and <i>Pipistrelle</i> species. Low levels of activity were concluded. Surveys pre-date the NatureScot guidance (SNH, 2019).

UK Bat Species Range

- 3.1.6 In review of the UK Habitats Directive Article 17 Report 'Habitats Directive Report 2019: Species Conservation Status Assessments 2019', the Site is located within the known UK distribution range for the following bat species:
 - Common pipistrelle;
 - Brown long-eared bat; and
 - Daubenton's bat.

3.2 Field Surveys

Habitat Assessment

- 3.2.1 The habitats within the Site are considered to be of low habitat risk for bats, in accordance with criteria presented in Table 3a of NatureScot guidelines (SNH, 2019).
- 3.2.2 The predominantly closed canopy of the commercially managed coniferous woodlands of the Site, particularly in proximity to proposed turbine locations, provide relatively poor foraging opportunities for bat species, in comparison to broadleaved and non-commercially managed woodlands.
- 3.2.3 Forestry compartment edges and rides are likely to provide higher value habitats for bats and also connectivity with potentially higher value habitats within the wider landscape. Lochans within the Site, where sheltered by surrounding plantation may also provide potentially higher quality and sheltered foraging habitats however, no turbines are located within close proximity to these features.
- 3.2.4 Connectivity between the Site and potentially higher value habitats for bats within wider landscape is also likely to be provided through the steep ridge line along the eastern boundary of the Site, which falls down to the coast and supports areas of broadleaved woodland within the Tarbert Woods Special Area of Conservation (SAC) and Tarbert to Skipness Coast Site of Special Scientific Interest (SSSI) (Figure 8.1).
- 3.2.5 No features with the potential to support roosting bats were identified within the Site or within 200 m (plus rotor radius) of proposed turbine locations. A number of stone structures were identified outside the Site. Tree specimens of coniferous plantation woodlands within the Site provide negligible roosting habitat suitability.

Bat Roost Surveys

Preliminary Roost Assessment

3.2.6 The findings of the PRA for the four stone buildings identified in **Figure 8.7** and conclusions of roost suitability in accordance with Collins guidance (2016) are presented in **Table 3.2** which should be read with reference to Photographic Plates (1-10), presented in **Annex 4**.

Structure Ref. (Figure 8.8)	Assessment	Roost Suitability (Collins, 2016)
Altagalvash	A collection of several low roofless stone structures, with some external and internal walls remaining intact but in varying states of decay and stability. Cracks and joints were infilled in parts with mortar or vegetation. Walls were generally single brick thick and cracks and joins inspected were insubstantial and mostly filled with vegetation and mosses. At least one structure supported the remains of a chimney, with an open chimney breast and a low (<1 m) entrance. Tall ruderals other vegetation encircled all of the wall bases of the structures, with scrub roosting through one or two structures. A thorough internal inspection of all wall bases and chimney breasts for bat droppings and other signs of use was hindered by overgrown vegetation and unsafe access, but no evidence of	Negligible/Low

Table 3.2: Preliminary Roost Assessment - Findings.

Structure Ref. (Figure 8.8)	Assessment	Roost Suitability (Collins, 2016)
	droppings or staining was identified in, on or about any structure. The open and poor structural integrity coupled with the structures position on an exposed coastal cliff location, with little (if any) shelter provided by surrounding typography and woodlands, creates relatively inhospitable suitability for roosting bats.	
Glenskible	Two low roofless stone structures, with some walls remaining intact but in varying states of decay. Cracks and joints remained mostly infilled with mortar or vegetation, with those inspected generally insubstantial and not deep. One structure supported remains of a chimney, with the chimney breast open and featuring a low (<1 m) entrance, blocked with tall ruderal vegetation. Tall ruderal and other vegetation also encircled all the wall basis and internal floor areas, with remaining masonry generally considered fragile and unstable in parts. No evidence of bat droppings or staining was identified in, on or about the structures.	Negligible/Low
Lagganroaig	Single low roofless stone structure, with some walls remaining intact but in varying states of decay. Wall were generally single stone thick, with cracks and joints remaining mostly infilled with mortar or vegetation. Cracks inspected were generally insubstantial and not deep, being open at both wall sides. Structure supported remains of a chimney, with the chimney breast open and featuring a low (<1 m) entrance, blocked with tall ruderal vegetation. Tall ruderal and other vegetation also encircled all the wall basis and internal floor areas. No evidence of bat droppings or staining was identified in, on or about the structure and the structure is located in an exposed coastal cliff location.	Low
Croit Bagh	Collection of low-level stone wall ruins overgrown with vegetation, supporting no suitable features for bats and not subject to a detailed inspection.	Negligible

Ground-level Static Surveys

3.2.7 A summary of results is presented below. Weather data are provided in **Annex 5** and the full Ecobat output report is provided in **Annex 6**.

Summary of Results and Activity Levels

- 3.2.8 Bats were detected on 96 dates out of a possible 109 sampled survey dates over the full survey period between July 2019 and June 2020.
- 3.2.9 Species identified are presented in **Table 3.3** along with potential collision risk and population vulnerability as described in Table 2 of NatureScot guidance (SNH, 2019).
- 3.2.10 A total of 15,014 bat passes were recorded over a total of 930 survey nights (all detectors combined) as summarised in **Table 3.4**.

Species	Collision Risk	Population Vulnerability
Common Pipistrelle	High	Medium
Soprano pipistrelle	High	Medium
Pipistrellus spp.	High	Medium
Myotis spp.	Low	Low/Medium
Brown long-eared	Low	Low

Table 3.3: Bat species recorded, collision risk and population vulnerability.

Species	Passes (No.)	Percentage of total (%)
Common Pipistrelle	5,086	33.9
Soprano pipistrelle	7,081	47.2
Pipistrellus spp.	2,601	17.3
Myotis spp.	187	1.2
Brown long-eared	59	0.4
Total	15.014	100.0

Table 3.41: Total number of bat passes.

Ecobat Output

- 3.2.11 The full *Ecobat* Tool output report is included as **Annex 6**.
- 3.2.12 **Table 3.5** presents the total numbers of nights bat activity fell under each band of high to low activity (see **Table 2.4**) and **Table 3.6** presents the percentiles and key metrics of the *Ecobat* output for each species.

Table 3.5: Number of nights recorded bat activity fell into each activity band or each species within the Site.

Species/Species Group	Nights of High Activity	Nights of Moderate/ High Activity	Nights of Moderate Activity	Nights of Low/ Moderate Activity	Nights of Low Activity
Common pipistrelle	66	57	57	47	73
Soprano pipistrelle	76	81	67	39	104
Pipistrellus spp.	18	4	0	0	0
Myotis	0	9	17	10	22
Brown long- eared	0	0	5	9	24

 Table 3.6: Percentiles for each species within the Site.

		Passes per Night					
Species/Species Group	Total Passes	Recorded ¹¹	Included in <i>Ecobat</i> ¹²	Median Percentile ⁸	95% Cls ⁹	Max Percentile ¹⁰	Nights Recorded
Common Pipistrelle	5086	5.47	12.02	52	72.5 - 83.5	95	300
Soprano pipistrelle	7081	7.61	16.74	52	78.5 - 85.5	97	367
Pipistrellus spp.	2601	2.8	6.15	88	85 - 95	98	22
<i>Myotis</i> spp.	187	0.2	0.44	31	44.5 - 61	75	58
Brown long- eared	59	0.06	0.14	1	16 - 37	52	38

Spatial Distribution

3.2.13 The *Ecobat* output median and mean nightly pass rate (passes per hour, per night) of each species, at each detector for all months is presented in **Table 3.7**. The use of the median value is recognised to provide the more accurate representation of activity, as bat activity levels between nights can be highly variable, and thus the median provides a more reliable value than the mean or maximum

⁸ A numerical representation of average activity levels relative to the surrounding landscape (within 200 km) for each night of surveying.

⁹ An indication of the confidence in the median percentile.

¹⁰ A numerical representation of maximum activity levels on any one night relative to the surrounding landscape (within 200 km) for each night of surveying

¹¹ Total recorded nights for the survey period is 930

¹² A total of 423 nights were included in *Ecobats* analysis. Nights when no bats are recorded are excluded.

(Lintott *et al.*, 2018). In addition, the dataset is unlikely to be normally distributed, therefore the median is the most appropriate metric to report.

- 3.2.14 Data for 'Includes Absences' and 'Excludes Absences' are included in **Table 3.7**. Includes absences takes into account nights when no bats were recorded and therefore lowers the overall medians and means (note this does not include any nights when no bats of any species were recorded as these are filtered out by *Ecobat* in the initial data upload to the *Ecobat* tool, see Limitations). Including absences are key to demonstrating the level of bat interest at a Site.
- 3.2.15 When absences are excluded medians and means are higher and show peaks in the data, which is especially useful for sites with low bat activity when peaks can be easily overlooked in large data sets. For example, when absences are included, brown long-eared bats medians result in 0.0, but when excluding absences, the value increases to 0.3 for some detectors.
- 3.2.16 **Table 3.8** presents the relative bat activity levels (percentiles) per detector, per species.

Species	Detector	Total Bat	Median Pass (passes per h	Rate our/night)	Mean Pass Rate (passes per hour/night)		
openeo	ID	Passes	Excl. Absences	Incl. Absences	Excl. Absences	Incl. Absences	
	MS 7	6	0.1	0.0	0.1	0.0	
	MS 9	13	0.1	0.1	0.2	0.2	
	MS 11	6	0.1	0.0	0.1	0.1	
	MS 12	100	0.3	0.2	0.5	0.3	
Common	MS 13	84	0.3	0.1	0.4	0.2	
pipistrelle	MS 16	48	0.2	0.1	0.3	0.1	
	MS 17	1121	0.9	0.9	2.8	2.6	
	MS 18	2828	3.2	2.8	5.7	5.0	
	MS 19	698	1.1	0.4	2.2	1.6	
	MS 20	182	0.3	0.1	0.5	0.3	
	MS 7	12	0.1	0.1	0.1	0.1	
	MS 9	6	0.1	0.1	0.1	0.1	
	MS 11	10	0.1	0.1	0.1	0.1	
	MS 12	97	0.2	0.1	0.5	0.3	
Soprano	MS 13	188	0.2	0.2	0.7	0.6	
pipistrelle	MS 16	318	0.4	0.3	1.0	0.9	
	MS 17	1705	1.6	1.5	4.3	4.0	
	MS 18	3790	4.5	3.7	7.0	6.4	
	MS 19	665	0.4	0.4	1.7	1.6	
	MS 20	290	0.3	0.3	0.5	0.5	
	MS 17	177	2.9	0.0	3.7	0.4	
snn	MS 18	2238	14.8	0.0	16.0	3.3	
244.	MS 19	186	16.8	0.0	16.8	0.3	
	MS 12	5	0.2	0.0	0.2	0.0	

 Table 3.7: Median and Mean bat pass rate per species, per detector.

Species	Detector ID	Total Bat Passes	Median Pass (passes per ł	Rate nour/night)	Mean Pass Rate (passes per hour/night)	
opecies			Excl. Absences	Incl. Absences	Excl. Absences	Incl. Absences
	MS 13	1	0.2	0.0	0.2	0.0
	MS 16	2	0.2	0.0	0.2	0.0
Myotis	MS 17	126	0.6	0.0	0.8	0.3
spp.	MS 18	38	0.4	0.0	0.4	0.1
	MS 19	6	0.2	0.0	0.2	0.0
	MS 20	9	0.2	0.0	0.2	0.0
	MS 12	1	0.1	0.0	0.1	0.0
	MS 16	2	0.1	0.0	0.1	0.0
Brown	MS 17	12	0.2	0.0	0.2	0.0
eared	MS 18	34	0.3	0.0	0.3	0.1
	MS 19	7	0.2	0.0	0.2	0.0
	MS 20	3	0.2	0.0	0.2	0.0

Table 3.8: Percentiles for each species per detector location for the whole survey period.Activity Level is based on the median percentile.

Species/Species Group	Detector ID	Median Percentile	95% Cls	Max Percentile	Nights Recorded	Activity Level
	MS 7	1	1 - 1	1	6	Low
	MS 9	1	1 - 29.5	58	7	Low
	MS 11	1	1 - 1	31	5	Low
	MS 12	31	16 - 43	83	27	Low to moderate
Common	MS 13	31	26.5 - 44.5	80	24	Low to moderate
pipistrelle	MS 16	31	16 - 31	61	23	Low to moderate
	MS 17	65	45.5 - 66.5	93	57	Moderate to high
	MS 18	83	72.5 - 83.5	95	64	High
	MS 19	70	50.5 - 71	95	37	Moderate to high
	MS 20	31	22 - 41.5	83	50	Low to moderate
	MS 7	1	1 - 1	1	12	Low
	MS 9	1	1 - 1	1	6	Low
Soprano	MS 11	1	1 - 1	31	9	Low
pipistrelle	MS 12	16	16 - 33	86	28	Low
	MS 13	31	16 - 37	91	37	Low to moderate
	MS 16	43	29.5 - 52	92	38	Moderate

Species/Species Group	Detector ID	Median Percentile	95% Cls	Max Percentile	Nights Recorded	Activity Level
	MS 17	75	67.5 - 77.5	95	57	Moderate to high
	MS 18	85	78.5 - 85.5	97	67	High
	MS 19	48	36 - 57	94	46	Moderate
	MS 20	43	31 - 44.5	82	67	Moderate
	MS 17	82	76 - 86	90	6	High
Pipistrellus spp.	MS 18	93	85 - 95	98	15	High
	MS 19	95	0	95	1	High
	MS 12	1	1 - 1	31	4	Low
	MS 13	1	0	1	1	Low
	MS 16	1	1 - 1	1	2	Low
<i>Myotis</i> spp.	MS 17	58	44.5 - 61	75	23	Moderate
	MS 18	43	22 - 43	65	15	Low to moderate
	MS 19	1	1 - 1	31	5	Low
	MS 20	1	1 - 1	31	8	Low
	MS 12	1	0	1	1	Low
	MS 16	1	1 - 1	1	2	Low
Brown long-	MS 17	1	1 - 1	31	10	Low
eared	MS 18	31	16 - 37	52	17	Low to moderate
	MS 19	1	1 - 16	31	5	Low
	MS 20	1	1 - 1	1	3	Low

Table 3.9: The number of nights sampled (detectors were operational for), the number of nights bats were
recorded and the total number of bat recorded per monitoring station. Percentage distribution of no. bats is
also presented.

Detector ID	No. Nights Sampled	No. of nights Bats were Recorded	Percentage of Nights Bats were Recorded	Total No. Bats recorded	Percentage Distribution of No. Bats
MS 7	78	16	20.5%	18	0.1%
MS 9	78	9	11.5%	19	0.1%
MS 11	46	12	26.1%	16	0.1%
MS 12	109	39	35.8%	203	1.4%
MS 13	109	44	40.4%	273	1.8%
MS 16	109	42	38.5%	370	2.5%
MS 17	77	61	79.2%	3141	20.9%
MS 18	108	73	67.6%	8928	59.5%
MS 19	108	50	46.3%	1,562	10.4%

Detector ID	No. Nights Sampled	No. of nights Bats were Recorded	Percentage of Nights Bats were Recorded	Total No. Bats recorded	Percentage Distribution of No. Bats
MS 20	108	77	71.3%	484	3.2%

Temporal Activity

- 3.2.17 A summary of results per season is provided in **Table 3.10**.
- 3.2.18 Activity levels were calculated by *Ecobat* per species (or species group) per month to allow for temporal variations in bat activity, as presented in **Table 3.10**. Median and maximum percentiles and corresponding activity levels are presented.

Table 3.10: Percentiles for each species each month within the site. Activity Level is based on the median percentile.

Spec ies/ Spec ies Grou p	Month	Median Percentile	95% Cls	Max Percentile	Nights Recorded	Activity Level
	May	60	72.5 - 83.5	93	52	Moderate
Com	June	63	72.5 - 83.5	95	62	Moderate to high
mon ninis	July	52	72.5 - 83.5	89	46	Moderate
trelle	August	43	72.5 - 83.5	95	92	Moderate
	September	31	72.5 - 83.5	91	48	Low to moderate
	May	70	78.5 - 85.5	91	59	Moderate to high
Sopr	June	67	78.5 - 85.5	95	67	Moderate to high
ano ninis	July	37	78.5 - 85.5	94	58	Low to moderate
trelle	August	52	78.5 - 85.5	97	106	Moderate
	September	31	78.5 - 85.5	96	77	Low to moderate
Pipis	July	86	85 - 95	96	6	High
trellu	August	87	85 - 95	98	9	High
s spp.	September	95	85 - 95	97	7	High
Myot	May	43	44.5 - 61	71	31	Moderate
<i>is</i> spp.	June	31	44.5 - 61	75	27	Low to moderate
Brow	May	1	16 - 37	52	19	Low
n long- eare d	June	1	16 - 37	43	19	Low

Potential bat roosts within or close to the site

3.2.19 *Ecobat* analysis showed that bat activity was recorded within the species-specific emergence time for five monitoring locations. This is detailed in **Table 3.11**.

Detector ID	Species/Species Group	Nights Recorded ¹³	Peak Count	Month of Peak Count
MS 16	Common pipistrelle	2	3	June
MS 16	Soprano pipistrelle	9	8	June
MS 17	Common pipistrelle	17	33	May
MS 17	Soprano pipistrelle	25	51	June
MS 17	Brown long-eared	2	1	May and June
MS 18	Common pipistrelle	32	28	June
MS 18	Soprano pipistrelle	22	14	Мау
MS 18	Pipistrellus spp.	1	1	September
MS 19	Common pipistrelle	2	1	August and September
MS 19	Soprano pipistrelle	6	1	May, June, August and September
MS 20	Common pipistrelle	1	1	Мау
MS 20	Soprano pipistrelle	4	1	May, June and August

Table 3.11: Bat activity recorded within the species-specific emergence time

- 3.2.20 No activity was recorded within any species-specific emergence time at MS 7, 9, 11, 12 or 13.
- 3.2.21 Based on the *Ecobat* analysis above, it is possible that roosts for common and soprano pipistrelle are located within proximity to MS 17 and MS 18. Roosts of *Pipistrellus* and brown long-eared may also be present within the Site locale.

Weather Conditions

- 3.2.22 Weather conditions are presented in Annex 4.
- 3.2.23 In the main, the 2019 summer and autumn periods have been dry and warm, with temperatures only falling below 8°C on one occasion in October 2019.
- 3.2.24 Moderate to heavy rain fall was recorded during October 2019 survey dates. Common pipistrelle was still recorded and these nights are therefore not excluded from analysis.
- 3.2.25 Wind data was greater than 5 mph on most survey nights. The extended survey periods adopted demonstrates that the Site does not regularly record less than 5 mph, and therefore recording periods were undertaken in conditions representative of the Site. The maximum wind speed recorded was 16 mph in September 2019. Bat activity was still recorded on this night.

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

¹³ Nights recorded with bat activity within the species-specific emergence time

4 DISCUSSION AND CONCLUSIONS

4.1 Desk Study

- 4.1.1 No statutory or non- statutory designated sites, with bat qualifying interests, were identified within 10 km of the Site.
- 4.1.2 The desk study identified the presence of common pipistrelle and Natterer's bat within proximity to the Site.

4.2 Field Surveys

Habitat Assessment

4.2.1 The habitats within the Site are considered to be of low habitat risk for bats, in accordance with criteria presented in Table 3a of NatureScot guidelines (SNH, 2019).

Roosts

- 4.2.2 No structures with the potential to support maternity or hibernation roosts were identified within at least 200 m plus rotor radius (77.5 m) of proposed turbine locations. A small number of stone structures were subject to a PRA however these were located outside the Site (closest 900 m from the nearest proposed turbine) and were considered to support negligible or low suitability for roosting bats and therefore unlikely to support maternity or hibernation roosts.
- 4.2.3 The Ecobat tool identified the possible presence of roosts of common and soprano pipistrelle and brown long-eared bat within proximity of the Site based on activity levels recorded within their species-specific emergence times.

Ground-level Static Surveys

- 4.2.4 Surveys identified the following species:
 - Common pipistrelle;
 - Soprano pipistrelle;
 - *Pipistrellus* species;
 - Myotis species; and
 - Brown long-eared bat.
- 4.2.5 Soprano pipistrelle was the most frequently recorded species representing 47.2% of all recordings. The species was recorded on 367 nights out of 930, representing 7.61 passes per night for the survey period. When compared with activity at other sites (*Ecobat* reference range and percentiles) soprano pipistrelle activity was concluded to be moderate at the 52nd percentile.
- 4.2.6 Common pipistrelle represented 33.9% of the activity, recorded on 300 nights and 5.47 passes per night for the survey period. Common pipistrelle activity was also concluded to be moderate at the 52nd percentile.
- 4.2.7 *Pipistrellus* species represented 17.3% of all recordings, identified on 22 nights, representing 2.8 passes per night. This indicates high activity at the 88th percentile.

4.2.8 *Myotis* species and brown long-eared activity was considered to be low with less than 1 bat pass recorded per night. When compared with activity at other sites (*Ecobat* reference range and percentiles) activity of these species was considered to be low to moderate and low respectively.

Spatial Distribution of Bat Activity

- 4.2.9 Common and soprano pipistrelle activity was recorded at all 10 detectors. Highest activity was at MS 18 in coniferous plantation with 5.7 and 7.0 mean pass rate (passes per hour, per night) respectively (excluding absences). Spatial variation at other locations was low and, in the majority, below 1 median pass rate (with the exception of MS 17 and MS 19).
- 4.2.10 *Pipistrellus* species activity was recorded at three detectors and the highest activity was at MS 18 and MS 19 with 16.0 and 16.8 mean pass rate (excluding absences). Activity at MS 17 was lower with 3.7 mean pass rate.
- 4.2.11 *Myotis* species and brown long-eared bats were only recorded at 7 and 6 of the locations respectively, and spatial variation amongst these was low, with less than 0.6 median pass rate (passes per hour, per night) for both species (excluding absences).
- 4.2.12 Overall, bat activity was higher at MS 17, 18 and 19 which are located on plantation woodland edge or within plantation woodland in the southern part of the Site.

Temporal Distribution of Bat Activity

- 4.2.13 Common and soprano pipistrelle were recorded across the entire survey period. Common pipistrelle activity was highest in May 2020 whilst soprano pipistrelle activity was highest in May and June 2020, all representing moderate to high activity.
- 4.2.14 *Pipistrellus* species were recorded between July and September 2019 and activity was high across the three months.
- 4.2.15 Brown long-eared bat was only recorded in May and June 2020 but overall activity was low.
- 4.2.16 Myotis species was also only recorded in May and June 2020 with activity being moderate in May and low to moderate in June.
- 4.2.17 Overall, activity was generally higher in the spring months with lower activity consistently recorded in autumn.

Bat Activity Relative to Other Sites

- 4.2.18 On nights where common and soprano pipistrelle was recorded, the level of activity most frequently represented moderate activity when compared against records from a similar date in a similar geographical location in *Ecobat*.
- 4.2.19 On nights where *Pipistrellus* species was recorded, the level of activity most frequently represented high activity when compared against records from a similar date in a similar geographical location in *Ecobat*; however, *Pipistrellus* species was only recorded at three monitoring stations out of the 10, so activity is considered to be low overall.
- 4.2.20 On nights where *Myotis* and brown long-eared was recorded, the level of activity most frequently represented low activity when compared against records from a similar date in a similar geographical location in *Ecobat*.
- 4.2.21 Overall, it is concluded that activity of common and soprano pipistrelle is moderate and activity of all other species is low. This is in recognition of the *Ecobat* tool output but also considering the limitations

of the tool and the numbers of nights excluded in the calculations which will inflate pass rates (nights when no bat passes are recorded are excluded).

5 ASSESSMENT OF THE POTENTIAL RISKS TO BATS

5.1 Stage 1 – Initial Site Risk Assessment

- 5.1.1 In accordance with NatureScot guidance (SNH, 2019) an assessment of the potential risk level of the Site, has been undertaken based on a consideration of habitat and development related features detailed in **Table 5.1**.
- 5.1.2 The values and classification criteria provided within **Table 5.1**, corresponding to Table 3a of NatureScot guidance (SNH, 2019), are intended to be taken as a guide, with habitat and development-related features at proposed wind farm sites rarely matching rigid descriptions. Professional judgement has therefore been applied to interpret and assign risk categories and conclude on the overall risk level for the Site.
- 5.1.3 The Site has been assessed as having an overall 'Site Risk' of **2**, representing **Low Site Risk**:
 - The Site 'Habitat Risk is classified as **Low**.
 - The Site 'Project Size' is classified as being **Medium**, comprising a development of 14 turbines of up to 180m tip height, with no other operational wind farm developments located within 5km of the Site.

Site Risk Level (1-5)	Project Size			
		Small	Medium	Large
Liebitet Diele	Low	1	2	3
	Moderate	2	3	4
	High	3	4	5
Green (1-2) = low,	/lowest site risk. Ambe	er (3) = medium site i	isk. Red (4-5) = high/l	nighest site risk.
Habitat Risk	Description			
Low	Small number of habitat that cou connected to the	potential roost f ld be used by sma e wider landscap	eatures, of low quall numbers of for by prominent lir	uality. Low quality foraging aging bats. Isolated site not near features.
Moderate	Buildings, trees of on or near the si	or other structure ite. Habitat could	es with moderate be used extensive	-high potential as roost sites ely by foraging bats.
	streams			
	Numerous suital other structures and/or confirme	ble buildings, tree with moderate-ł d roosts present	es (particularly ma nigh potential as r close to or on the	ature ancient woodland) or oost sites on or near the site, e site.
High	Extensive and di connected to the rivers, blocks of	verse habitat mo e wider landscap woodland and m	saic of high qualit e by a network of ature hedgerows.	y for foraging bats. Site is strong linear features such as
	At/near edge of	range and/or on	an important flyw	/ay.
	Close to key roo	st and/or swarmi	ng site.	

Table 5.1: Stage 1- Initial Site Risk Assessment (Table 3a of NatureScot guidance (SNH, 2019)).

Project Size	Description
Small	Small scale development (≤10 turbines). No other wind energy developments within 10 km. Comprising turbines <50 m in height.
Medium	Larger developments (between 10 and 40 turbines). May have some other wind developments within 5 km. Comprising turbines 50-100 m in height.
Large	Largest developments (>40 turbines) with other wind energy developments within 5 km. Comprising turbines >100 m in height.

5.2 Stage 2 – Overall Risk Assessment

- 5.2.1 Stage 2 of the two-stage process detailed within NatureScot guidance (SNH, 2019) has been completed to provide an overall assessment or risk, by considering the conclusions of Stage 1 (above) in relation to relative levels of bat activity obtained through using the *Ecobat* tool (Box 1) and considering the vulnerability of species recorded, at the population level.
- 5.2.2 In accordance with NatureScot guidance (SNH, 2019), Stage 2 should be carried out separately for all high collision risk species recorded, which includes the following species recorded during bat activity surveys for the proposed Development:
 - Common pipistrelle;
 - Soprano pipistrelle; and
 - Pipistrellus species.
- 5.2.3 In order to derive an 'Overall Risk Assessment' the determined Bat Activity Category derived from the *Ecobat* Tool Output Report is compared against the site Risk Level (Stage 1) using the matrix presented in Table 5.2 (based on Table 3b in SNH (2019) to determine the level of overall risk.

Table 5.2: Overall Risk Assessment (Table 3b from NatureScot guidance (SNH, 2019)).Green = Low, Amber = Medium, Red = High.

Site Risk	Ecobat	Activity Ca	tegory			
Level	Nil	Low	Low-Moderate	Moderate	Moderate-High	High
Lowest	0	1	2	3	4	5
Low	0	2	4	6	8	10
Medium	0	3	6	9	12	15
High	0	4	8	12	15	18
Highest	0	5	10	15	20	25

- 5.2.4 The calculated 'Overall Risk Assessment' per species, both temporally and spatially is presented in **Table 5.3**. The values as presented in the matrix in **Table 5.2** are presented but the Overall Risk Category provided is concluded on the basis of the determined *Ecobat* conclusion and professional judgement on the basis of all available information and in recognition of the limitations of *Ecobat*.
- 5.2.5 As outlined, the *Ecobat* tool is in its infancy and given current limitations in available bat survey data on the database, definitive bat activity for regions is not generated and bat activity representations are instead indicative for each region.
- 5.2.6 In summary, the Overall Risk Assessment for common pipistrelle and soprano pipistrelle is considered to fall under "Low/Medium Site Risk" and "Medium Site Risk" for *Pipistrellus* species.

5.2.7 In recognition of the limitations associated with the *Ecobat* tool, the output of Stage 2 should be treated with caution.

 Table 5.2: Overall Risk Assessment (Table 3b from SNH (2019) guidance). Key: green = Low, Amber = Medium, Red = High.

Species / species group	I.D	Median Percentile ¹⁴	Percentile Category	Overall Risk Assessment (Stage 2)	Species / species group	Month	Median Percentile	Percentile Category	Overall Risk Assessment (Stage 2)
	MS 7	1	Low	Low (2)		May	60	Moderate	Medium (6)
	MS 9	1	Low	Low (2)		June	63	Moderate to high	Medium (8)
	MS 11	1	Low	Low (2)	Common	July	52	Moderate	Medium (6)
	MS 12	31	Low to moderate	Low (4)		August	43	Moderate	Medium (6)
	MS 13	31	Low to moderate	Low (4)		September	31	Low to moderate	Low (2)
	MS 16	31	Low to moderate	Low (4)		May	70	Moderate to high	Medium (8)
Common pipistrelle	MS 17	65	Moderate to high	Medium (8)		June	67	Moderate to high	Medium (8)
	MS 18	83	High	Medium (10)	Soprano pipistrelle	July	37	Low to moderate	Low (2)
	MS 19	70	Moderate to high	Medium (8)		August	52	Moderate	Medium (6)
	MS 20	31	Low to moderate	Low (4)		September	31	Low to moderate	Low (2)
	MS 7	1	Low	Low (2)		July	86	High	Medium (10)
	MS 9	1	Low	Low (2)	Pinistrellus	August	87	High	Medium (10)
	MS 11	1	Low	Low (2)		September	95	High	Medium (10)
	MS 12	16	Low	Low (2)					
Soprano pipistrelle	MS 13	31	Low to moderate	Low (4)					
	MS 16	43	Moderate	Medium (6)					

	MS 17	75	Moderate to high	Medium (8)
	MS 18	85	High	Medium (10)
	MS 19	48	Moderate	Medium (6)
	MS 20	43	Moderate	Medium (6)
	MS 17	82	High	Medium (10)
Pipistrellus	MS 18	93	High	Medium (10)
	MS 19	95	High	Medium (10)

¹⁴ Based on the Median Percentile

6 **REFERENCES**

Arcus (2018). Achaglass Win Farm Technical Appendix: Bats and Protected Species. <u>https://www.scottishpowerrenewables.com/userfiles/file/Sheirdrim_Technical_Appendix_8.3_Bats_and_Protected_Species.pdf</u>

Collins, J. (Ed.) (2016) Bat Surveys for Professional Ecologists: Good Practice Guidelines (3rd Edn). The Bat Conservation Trust, London.

Lintott, P.R., Davison, S., van Breda, J., Kubasiewicz, L., Dowse, D., Daisley, J., Haddy, E. and Mathews, F., (2018). Ecobat: An online resource to facilitate transparent, evidence-based interpretation of bat activity data. Ecology and evolution, 8(2), pp.935-941.

SNH (2019). Bats and Onshore Wind Turbines: Survey, Assessment and Mitigation.

Swift, S.M. (2004). "Bat species in Scotland", A review of European Bat Lyssavirus (EBLV) and the status of bats in Scotland, Racey, P.A., Raynor, R., and Pritchard, S. (Eds.). Scottish Natural Heritage Commissioned Report, No. 063, pp. 1–39.

ANNEX 1: BAT SPECIES SCIENTIFIC NAMES

- Common pipistrelle Pipistrellus pipstrellus;
- Soprano pipistrelle *Pipistrellus pygmaeus*;
- Pipistrellus spp.;
- Myotis spp.; and,
- Brown long-eared bat *Plecotus auritus*.

ANNEX 2: BAT ACTIVITY SURVEY EFFORT

 Table A2.1 below provides further details of bat activity surveys.

Monitoring Station Ref.	Monitoring Station Grid Ref.	Date Start	Date End	No. Nights				
MS7	NR8751964079	17/09/2019	15/06/2020	78				
MS9	NR8782063301	17/09/2019	15/06/2020	78				
MS11	NR8838662269	17/09/2019	15/06/2020	46				
MS12	NR8925263401	17/09/2019	15/06/2020	109				
MS13	NR8892262789	17/09/2019	15/06/2020	109				
MS16	NR8955162703	17/09/2019	15/06/2020	109				
MS17	NR8949761598	17/09/2019	15/06/2020	77				
MS18	NR9085461069	17/09/2019	15/06/2020	108				
MS19	NR9062962206	17/09/2019	15/06/2020	108				
MS20	NR8961961926	17/09/2019	15/06/2020	108				

Table A2.1: Bat Activity Survey Effort.

ANNEX 3: EXISTING BAT SPECIES RECORDS – HBRG

Table A3.1 below provides further details of bat records provided by HBRG from within 10km of the Site.

Table A3.1: Existing bat species records – HBRG.

Species	Date	Location	Sample Spatial Reference	Abundances	Comment
Pipistrelle Bat species Pipistrellus	1986 - 1987	Watten	ND2557	-	From IMAG database.
Pipistrelle Bat species Pipistrellus	06/09/2002	Castletown Bay	ND199684	-	Seen.
Pipistrelle Bat species Pipistrellus	03/09/2008	Castle of Mey	ND297736	-	26 passes foraging along hedge at drive.
Pipistrelle Bat species Pipistrellus	03/09/2008	Castle of Mey	ND290739	-	6 passes at open entrance.
Pipistrelle Bat species Pipistrellus	30/09/2008	Castlehill	ND201682	-	At dawn, several foraging around avenue of trees at road. One pair chasing each other at ruined lodge.
Pipistrelle Bat species Pipistrellus	29/04/2009	Castlehill	ND198686	1 Count	-
Pipistrelle Bat species Pipistrellus	30/04/2009	Hill of Ratter	ND244733	-	-
Pipistrelle Bat species <i>Pipistrellus</i>	02/05/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species Pipistrellus	05/05/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species <i>Pipistrellus</i>	08/05/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species Pipistrellus	10/05/2009	Clett cottage	ND262711	-	-

Species	Date	Location	Sample Spatial Reference	Abundances	Comment
Pipistrelle Bat species Pipistrellus	11/05/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species Pipistrellus	19/05/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species <i>Pipistrellus</i>	25/05/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species Pipistrellus	01/06/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species Pipistrellus	09/06/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species Pipistrellus	15/06/2009	Dunnet	ND223692	-	-
Pipistrelle Bat species Pipistrellus	15/07/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species Pipistrellus	10/09/2009	Harrow	ND281742	2 Count	At old work sheds.
Pipistrelle Bat species Pipistrellus	10/09/2009	Harrow	ND281742	5 Count	Between ice house and barn.
Pipistrelle Bat species Pipistrellus	26/10/2009	Clett cottage	ND262711	-	-
Pipistrelle Bat species Pipistrellus	02/04/2015	Camster	ND210609	4 Count of Adult	First sight of year
Common Pipistrelle Pipistrellus pipistrellus	16/08/2010	John o' Groats	ND379735	-	Detector contacts at dusk & dawn. WAV files analysed with BatSound.
Common Pipistrelle Pipistrellus pipistrellus	25/04/2012	Lower Seater	ND2461	-	Bat Detector, 1, detected at 22:21.
Species	Date	Location	Sample Spatial Reference	Abundances	Comment
---	------------	--------------	-----------------------------	------------	------------------------------------
Common Pipistrelle Pipistrellus pipistrellus	29/04/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 00:16.
Common Pipistrelle Pipistrellus pipistrellus	01/05/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 00:23.
Common Pipistrelle Pipistrellus pipistrellus	01/05/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 23:43.
Common Pipistrelle Pipistrellus pipistrellus	02/05/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 01:52.
Common Pipistrelle Pipistrellus pipistrellus	02/05/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 02:38.
Common Pipistrelle Pipistrellus pipistrellus	06/05/2012	Lochend	ND2769	-	Bat Detector, 1 detected at 22:28.
Common Pipistrelle Pipistrellus pipistrellus	12/05/2012	Lochend	ND2769	-	Bat Detector, Pass at 22:06.
Common Pipistrelle Pipistrellus pipistrellus	21/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 22:51.
Common Pipistrelle Pipistrellus pipistrellus	21/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 23:07.
Common Pipistrelle Pipistrellus pipistrellus	21/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 23:23.
Common Pipistrelle Pipistrellus pipistrellus	21/07/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 23:10.
Common Pipistrelle Pipistrellus pipistrellus	21/07/2012	Lochend	ND2668	-	Bat Detector, 1 detected.
Common Pipistrelle Pipistrellus pipistrellus	21/07/2012	Lochend	ND2768	-	Bat Detector, 1 detected.

Species	Date	Location	Sample Spatial Reference	Abundances	Comment
Common Pipistrelle Pipistrellus pipistrellus	22/07/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 02:43.
Common Pipistrelle Pipistrellus pipistrellus	22/07/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 03:03.
Common Pipistrelle Pipistrellus pipistrellus	23/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 23:26.
Common Pipistrelle Pipistrellus pipistrellus	23/07/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 23:19.
Common Pipistrelle Pipistrellus pipistrellus	24/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 03:24.
Common Pipistrelle Pipistrellus pipistrellus	24/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 23:16.
Common Pipistrelle Pipistrellus pipistrellus	24/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 23:36.
Common Pipistrelle Pipistrellus pipistrellus	24/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 23:40.
Common Pipistrelle Pipistrellus pipistrellus	25/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 00:31.
Common Pipistrelle Pipistrellus pipistrellus	25/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 02:54.
Common Pipistrelle Pipistrellus pipistrellus	26/07/2012	Lower Seater	ND26	-	Bat Detector, 8 passes.
Common Pipistrelle Pipistrellus pipistrellus	28/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 00:13.
Common Pipistrelle Pipistrellus pipistrellus	28/07/2012	Lochend	ND2769	-	Bat Detector, Pass at 03:25.

Species	Date	Location	Sample Spatial Reference	Abundances	Comment
Common Pipistrelle Pipistrellus pipistrellus	15/09/2012	Lochend	ND2769	-	Bat Detector, 1 detected.
Common Pipistrelle Pipistrellus pipistrellus	15/09/2012	Lochend	ND2668	-	Bat Detector, 1 detected.
Common Pipistrelle Pipistrellus pipistrellus	15/09/2012	Lochend	ND2668	-	Bat Detector, 1 detected.
Common Pipistrelle Pipistrellus pipistrellus	16/09/2012	Lochend	ND2769	-	Bat Detector, Pass at 20:27.
Common Pipistrelle Pipistrellus pipistrellus	16/09/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 04:09.
Common Pipistrelle Pipistrellus pipistrellus	16/09/2012	Lower Seater	ND2560	-	Bat Detector, Pass at 20:42.
Common Pipistrelle Pipistrellus pipistrellus	20/09/2012	Lower Seater	ND2559	-	Bat Detector, 2 passes at 20:17.
Common Pipistrelle Pipistrellus pipistrellus	22/09/2012	Lochend	ND2668	-	Bat Detector, 2 passes.
Common Pipistrelle Pipistrellus pipistrellus	22/08/2018	Stangergill	ND2066067714	1 Count of Adult	Dead on pavement.

ANNEX 4: PHOTOGRAPHIC PLATES

Table A4.1 below provides photographs from the Site.

Plate 1: Altagalvash stone structure.	Plate 2: Altagalvash stone structure.
Plate 3: Altagalvash stone structure.	Plate 4: Altagalvash stone structure.

Table 4.1: Photographic plates from roost surveys.

ANNEX 5: WEATHER CONDITIONS

 Table A5.1 provides weather conditions for Bat Activity Survey periods.

Table A5.1: Weather Conditions.

Date	Temp at Dusk (°C)	Rainfall	Maximum Wind Speed (mph)
19/07/2019	15	0	2
20/07/2019	17	0	6
21/07/2019	14	Light	2
22/07/2019	20	0	5
23/07/2019	20	0	3
24/07/2019	17	0	5
25/07/2019	21	0	7
26/07/2019	20	0	5
27/07/2019	16	0	3
28/07/2019	16	0	1
29/07/2019	15	Light	4
30/07/2019	19	0	1
31/07/2019	20	0	5
01/08/2019	19	0	2
02/08/2019	21	0	3
03/08/2019	21	0	5
04/08/2019	16	0	4
05/08/2019	16	0	3
06/08/2019	15	0	1
07/08/2019	17	0	6
08/08/2019	18	0	3
09/08/2019	15	0	6
10/08/2019	20	0	3
11/08/2019	11	Light	6
12/08/2019	15	0	5
01/09/2019	11	0	5
02/09/2019	13	Light	13
03/09/2019	15	Light	12

Date	Temp at Dusk (°C)	Rainfall	Maximum Wind Speed (mph)
04/09/2019	12	0	16
05/09/2019	12	0	9
06/09/2019	11	0	6
07/09/2019	11	0	3
08/09/2019	10	0	1
09/09/2019	12	Light	2
10/09/2019	11	0	6
11/09/2019	13	0	6
12/09/2019	15	0	5
13/09/2019	12	0	3
14/09/2019	15	0	7
15/09/2019	11	Light	2
16/09/2019	12	0	3
17/09/2019	12	0	5
18/09/2019	13	0	9
19/09/2019	15	0	1
20/09/2019	16	0	8
21/09/2019	18	0	7
22/09/2019	15	0	3
23/09/2019	14	Heavy rain	9
24/09/2019	14	0	8
25/09/2019	14	0	1
26/09/2019	13	0	13
27/09/2019	11	0	10
28/09/2019	12	0	7
29/09/2019	11	0	10
30/09/2019	11	Heavy rain	7
01/10/2019	7	0	9

Date	Temp at Dusk (°C)	Rainfall	Maximum Wind Speed (mph)
02/10/2019	7	0	5
15/05/2020	9	0	15
16/05/2020	11	Light	14
17/05/2020	12	Light	17
18/05/2020	11	Light	7
19/05/2020	14	0	5
20/05/2020	12	0	6
21/05/2020	15	Light	9
22/05/2020	11	Light	30
23/05/2020	10	Light	23
24/05/2020	12	0	5
25/05/2020	13	0	9
26/05/2020	11	0	7
27/05/2020	14	0	5
28/05/2020	19	0	7
29/05/2020	18	0	7
30/05/2020	16	0	16
31/05/2020	16	0	16
01/06/2020	18	0	8
02/06/2020	14	Light	15
03/06/2020	11	0	6
04/06/2020	9	Light	10
05/06/2020	12	Light	13
06/06/2020	12	0	10
07/06/2020	12	0	15
08/06/2020	11	0	6
09/06/2020	10	Light (all night)	7
10/06/2020	12	Light	17
11/06/2020	13	0	7
12/06/2020	13	0	12
13/06/2020	14	0	10
14/06/2020	17	0	10
15/06/2020	17	0	9
16/06/2020	16	Light	10

ANNEX 6: ECOBAT TOOL OUTPUT REPORT

Bat Activity Analysis

Site Name: Earraghail

Author: Lizi Pimlott

14/06/2021

7 SUMMARY

Bats were detected on **96** nights between **2019-07-16** and **2020-06-15**, using **10** static bat detectors. Throughout this period **5** species were recorded. **Table 1.** Detectors were placed at the following locations:

Detector ID	Latitude	Longitude
MS 12	55.81773	-5.365471
MS 13	55.81211	-5.370238
MS 13	55.81210	-5.370269
MS 16	55.81165	-5.360124
MS 16	55.81160	-5.360183
MS 17	55.80173	-5.360194
MS 17	55.80167	-5.360189
MS 18	55.79756	-5.338464
MS 18	55.79751	-5.338172
MS 19	55.80756	-5.342593
MS 19	55.80761	-5.342630
MS 20	55.80461	-5.358734
MS 20	55.80466	-5.358499
MS 11	55.80720	-5.378402
MS 12	55.81773	-5.365487
MS 9	55.81621	-5.388222
MS 7	55.82306	-5.393624

Page Break

8 SURVEY NIGHTS

Table 2. The number of nights that bats were detected on each recorder. This is not the same as the number of nights that detectors were active if there were nights when no bats were detected.

Detector ID	No. of nights
MS 11	12
MS 12	39
MS 13	44
MS 16	42

MS 17	61
MS 18	73
MS 19	50
MS 20	77
MS 7	16
MS 9	9

9 SURVEY NIGHTS

Figure 1. Horizontal bars show nights when acoustic detectors recorded bats.

Page Break 9.1 PART 1: Percentiles Analysis

This first part of the analysis looks at the relative activity levels of the bats you recorded. We take your value for the total bat passes each night for each species, and compare this to the values in our reference database. We tell you what percentile your data falls at, and therefore what the relative activity level is. For example, if the reference database has values of 5, 10, 15, 20 and you submit a value of 18, this will be the 80th percentile, and be classed as high activity.

The reference range dataset was stratified to include:

• Only records from within 30 days of the survey date.

- Only records from within 100km radius of the survey location.
- Records using any make of bat detector.

9.2 PER DETECTOR

Table 3. Summary table showing the number of nights recorded bat activity fell into each activity band for each species.

					Nights of	
Detector	Species/Species	Nights of High	Nights of Moderate/	Nights of Moderate	Low/ Moderate	Nights of Low
ID	Group	Activity	, High Activity	Activity	Activity	Activity
MS 11	Pipistrellus pipistrellus	0	0	0	1	4
MS 11	Pipistrellus pygmaeus	0	0	0	1	8
MS 12	Myotis	0	0	0	1	3
MS 12	Pipistrellus pipistrellus	1	4	6	7	9
MS 12	Pipistrellus pygmaeus	1	1	7	5	14
MS 12	Plecotus auritus	0	0	0	0	1
MS 13	Myotis	0	0	0	0	1
MS 13	Pipistrellus pipistrellus	1	2	7	8	6
MS 13	Pipistrellus pygmaeus	1	4	7	8	17
MS 16	Myotis	0	0	0	0	2
MS 16	Pipistrellus pipistrellus	0	1	6	6	10
MS 16	Pipistrellus pygmaeus	3	9	9	5	12
MS 16	Plecotus auritus	0	0	0	0	2
MS 17	Myotis	0	8	10	4	1
MS 17	Pipistrellus	5	1	0	0	0
MS 17	Pipistrellus pipistrellus	17	16	7	7	10
MS 17	Pipistrellus pygmaeus	21	23	8	1	4
MS 17	Plecotus auritus	0	0	0	2	8
MS 18	Myotis	0	1	7	3	4
MS 18	Pipistrellus	12	3	0	0	0

MS 18	Pipistrellus pipistrellus	38	13	9	1	3
MS 18	Pipistrellus pygmaeus	41	19	3	2	2
MS 18	Plecotus auritus	0	0	5	5	7
MS 19	Myotis	0	0	0	1	4
MS 19	Pipistrellus	1	0	0	0	0
MS 19	Pipistrellus pipistrellus	8	13	7	5	4
MS 19	Pipistrellus pygmaeus	7	12	9	6	12
MS 19	Plecotus auritus	0	0	0	2	3
MS 20	Myotis	0	0	0	1	7
MS 20	Pipistrellus pipistrellus	1	8	14	10	17
MS 20	Pipistrellus pygmaeus	2	13	24	11	17
MS 20	Plecotus auritus	0	0	0	0	3
MS 7	Pipistrellus pipistrellus	0	0	0	0	6
MS 7	Pipistrellus pygmaeus	0	0	0	0	12
MS 9	Pipistrellus pipistrellus	0	0	1	2	4
MS 9	Pipistrellus pygmaeus	0	0	0	0	6

Table 4. Summary table showing key metrics for each species recorded. The reference range is the number of nights for each species that your data were compared to. We recommend a Reference Range of 200+ to be confident in the relative activity level.

Detector ID	Species/Species Group	Median Percentile	95% Cls	Max Percentile	Nights Recorded	Reference Range
MS 11	Pipistrellus pipistrellus	1	1 - 1	31	5	1096
MS 11	Pipistrellus pygmaeus	1	1 - 1	31	9	1567
MS 12	Myotis	1	1 - 1	31	4	536
MS 12	Pipistrellus pipistrellus	31	16 - 43	83	27	1096
MS 12	Pipistrellus pygmaeus	16	16 - 33	86	28	1567
MS 12	Plecotus auritus	1	0	1	1	43

MS 13	Myotis	1	0	1	1	536
MS 13	Pipistrellus pipistrellus	31	26.5 - 44.5	80	24	1096
MS 13	Pipistrellus pygmaeus	31	16 - 37	91	37	1567
MS 16	Myotis	1	1 - 1	1	2	536
MS 16	Pipistrellus pipistrellus	31	16 - 31	61	23	1096
MS 16	Pipistrellus pygmaeus	43	29.5 - 52	92	38	1567
MS 16	Plecotus auritus	1	1 - 1	1	2	43
MS 17	Myotis	58	44.5 - 61	75	23	536
MS 17	Pipistrellus	82	76 - 86	90	6	1776
MS 17	Pipistrellus pipistrellus	65	45.5 - 66.5	93	57	1096
MS 17	Pipistrellus pygmaeus	75	67.5 - 77.5	95	57	1567
MS 17	Plecotus auritus	1	1 - 1	31	10	43
MS 18	Myotis	43	22 - 43	65	15	536
MS 18	Pipistrellus	93	85 - 95	98	15	1776
MS 18	Pipistrellus pipistrellus	83	72.5 - 83.5	95	64	1096
MS 18	Pipistrellus pygmaeus	85	78.5 - 85.5	97	67	1567
MS 18	Plecotus auritus	31	16 - 37	52	17	43
MS 19	Myotis	1	1 - 1	31	5	536
MS 19	Pipistrellus	95	0	95	1	1776
MS 19	Pipistrellus pipistrellus	70	50.5 - 71	95	37	1096
MS 19	Pipistrellus pygmaeus	48	36 - 57	94	46	1567
MS 19	Plecotus auritus	1	1 - 16	31	5	43
MS 20	Myotis	1	1 - 1	31	8	536
MS 20	Pipistrellus pipistrellus	31	22 - 41.5	83	50	1096
MS 20	Pipistrellus pygmaeus	43	31 - 44.5	82	67	1567
MS 20	Plecotus auritus	1	1 - 1	1	3	43

MS 7	Pipistrellus pipistrellus	1	1 - 1	1	6	1096
MS 7	Pipistrellus pygmaeus	1	1 - 1	1	12	1567
MS 9	Pipistrellus pipistrellus	1	1 - 29.5	58	7	1096
MS 9	Pipistrellus pygmaeus	1	1 - 1	1	6	1567

###Figures

Figure 2. The recorded activity of bats during the survey. The centre line indicates the median activity level whereas the box represents the interquartile range (the spread of the middle 50% of nights of activity)

Detector ID

Figure 3. The activity level (percentile) of bats recorded across each night of the bat survey.

Night

Page Break

9.3 PER DETECTOR, PER MONTH

Table 5. Summary table showing the number of nights recorded bat activity fell into each activity band for each species at each detector during each month.

				Nights of		Nights of	
Detector	Spacios (Spacios		Nights	Moderate/	Nights of	Low/	Nights
ID	Group	Month	Activity	Activity	Activity	Activity	Activity
MS 11	Pipistrellus pipistrellus	Jul	0	0	0	0	2
MS 11	Pipistrellus pipistrellus	Aug	0	0	0	1	2
MS 11	Pipistrellus pygmaeus	Jul	0	0	0	0	4
MS 11	Pipistrellus pygmaeus	Aug	0	0	0	1	4
MS 12	Myotis	Jun	0	0	0	1	3
MS 12	Pipistrellus pipistrellus	May	0	0	2	1	1
MS 12	Pipistrellus pipistrellus	Jun	1	2	0	2	5
MS 12	Pipistrellus pipistrellus	Jul	0	0	1	2	0
MS 12	Pipistrellus pipistrellus	Aug	0	0	3	2	3
MS 12	Pipistrellus pipistrellus	Sep	0	2	0	0	0
MS 12	Pipistrellus pygmaeus	May	1	0	1	0	2
MS 12	Pipistrellus pygmaeus	Jun	0	1	2	2	1
MS 12	Pipistrellus pygmaeus	Jul	0	0	0	1	2
MS 12	Pipistrellus pygmaeus	Aug	0	0	3	1	3
MS 12	Pipistrellus pygmaeus	Sep	0	0	1	1	6
MS 12	Plecotus auritus	May	0	0	0	0	1
MS 13	Myotis	Jun	0	0	0	0	1
MS 13	Pipistrellus pipistrellus	May	0	0	1	1	0
MS 13	Pipistrellus pipistrellus	Jun	0	1	3	1	2
MS 13	Pipistrellus pipistrellus	Jul	0	1	1	0	1
MS 13	Pipistrellus pipistrellus	Aug	1	0	2	4	1

MS 13	Pipistrellus pipistrellus	Sep	0	0	0	2	2
MS 13	Pipistrellus pygmaeus	Мау	0	0	1	0	1
MS 13	Pipistrellus pygmaeus	Jun	1	3	1	2	2
MS 13	Pipistrellus pygmaeus	Jul	0	0	0	1	4
MS 13	Pipistrellus pygmaeus	Aug	0	1	2	4	7
MS 13	Pipistrellus pygmaeus	Sep	0	0	3	1	3
MS 16	Myotis	May	0	0	0	0	1
MS 16	Myotis	Jun	0	0	0	0	1
MS 16	Pipistrellus pipistrellus	May	0	0	1	1	1
MS 16	Pipistrellus pipistrellus	Jun	0	1	1	1	2
MS 16	Pipistrellus pipistrellus	Jul	0	0	0	2	1
MS 16	Pipistrellus pipistrellus	Aug	0	0	2	0	4
MS 16	Pipistrellus pipistrellus	Sep	0	0	2	2	2
MS 16	Pipistrellus pygmaeus	Мау	2	3	1	0	2
MS 16	Pipistrellus pygmaeus	Jun	0	3	4	0	3
MS 16	Pipistrellus pygmaeus	Jul	0	0	0	2	3
MS 16	Pipistrellus pygmaeus	Aug	0	1	1	1	1
MS 16	Pipistrellus pygmaeus	Sep	1	2	3	2	3
MS 16	Plecotus auritus	May	0	0	0	0	2
MS 17	Myotis	May	0	3	6	3	0
MS 17	Myotis	Jun	0	5	4	1	1
MS 17	Pipistrellus	Jul	3	0	0	0	0
MS 17	Pipistrellus	Aug	2	1	0	0	0
MS 17	Pipistrellus pipistrellus	Мау	4	3	1	1	5
MS 17	Pipistrellus pipistrellus	Jun	8	4	1	1	0

Pipistrellus pipistrellus	Jul	4	5	2	0	0
Pipistrellus pipistrellus	Aug	1	4	3	5	5
Pipistrellus pygmaeus	May	3	7	2	1	1
Pipistrellus pygmaeus	Jun	10	2	0	0	2
Pipistrellus pygmaeus	Jul	7	5	1	0	0
Pipistrellus pygmaeus	Aug	1	9	5	0	1
Plecotus auritus	May	0	0	0	1	4
Plecotus auritus	Jun	0	0	0	1	4
Myotis	May	0	1	6	2	2
Myotis	Jun	0	0	1	1	2
Pipistrellus	Jul	2	1	0	0	0
Pipistrellus	Aug	5	1	0	0	0
Pipistrellus	Sep	5	1	0	0	0
Pipistrellus pipistrellus	May	9	2	3	0	1
Pipistrellus pipistrellus	Jun	10	0	1	0	1
Pipistrellus pipistrellus	Jul	3	5	2	0	0
Pipistrellus pipistrellus	Aug	11	6	2	0	0
Pipistrellus pipistrellus	Sep	5	0	1	1	1
Pipistrellus pygmaeus	May	12	0	1	1	0
Pipistrellus pygmaeus	Jun	6	4	1	0	1
Pipistrellus pygmaeus	Jul	5	4	1	0	1
Pipistrellus pygmaeus	Aug	14	6	0	0	0
Pipistrellus pygmaeus	Sep	4	5	0	1	0
Plecotus auritus	May	0	0	4	2	2
Plecotus auritus	Jun	0	0	1	3	5
Myotis	May	0	0	0	1	3
Myotis	Jun	0	0	0	0	1
	Pipistreilus pipistrellus Pipistrellus pygmaeus Pipistrellus pygmaeus Pipistrellus pygmaeus Pipistrellus pygmaeus Piecotus auritus Piecotus auritus Pipistrellus Pipistrellus Pipistrellus Pipistrellus pipistrellus	PipistrellusJuipipistrellusAugpipistrellusMaypygmaeusJunpygmaeusJulpygmaeusJulpygmaeusAugPipistrellusJulpygmaeusAugPipistrellusAugpygmaeusPipistrellusPipistrellusJunpygmaeusJunPipistrellusJunMyotisJunMyotisJunPipistrellusJunPipistrellusJunPipistrellusSepPipistrellusJunpipistrellusJunPipistrellusJunpipistrellusSepPipistrellusJunpipistrellusJunpipistrellusJunpipistrellusJunpipistrellusJunpipistrellusJunpipistrellusJunpipistrellusJunpipistrellusSepPipistrellusJunpipistrellusJunpygmaeusJunpygmaeusJunpygmaeusJunpygmaeusJunpygmaeusJunpygmaeusPipistrellusPipistrellusAugpygmaeusJunpygmaeusJunpygmaeusJunpygmaeusJunPipistrellusJunpygmaeusJunPipistrellusAugpygmaeusSeppipistrellusAug	PipistrellusJui4pipistrellusAug1PipistrellusMay3PipistrellusMay3pygmaeusJun10pygmaeusJul7PipistrellusJul7pygmaeusJul7PipistrellusJul7pygmaeusMay0Plecotus auritusJun0MyotisJun0MyotisJun0PipistrellusJul2PipistrellusJul2PipistrellusJul2PipistrellusJul2PipistrellusJul2PipistrellusJul2PipistrellusJul3pipistrellusJun10pipistrellusJun10pipistrellusJul3pipistrellusJul3pipistrellusJul3pipistrellusJul3pipistrellusJul3pipistrellusAug11pipistrellusJun6pygmaeusJun6pygmaeusJul5PipistrellusJul5pygmaeusJul5PipistrellusJul5pygmaeusJul5PipistrellusAug14pygmaeusSep4PipistrellusSep4PipistrellusMay0PipistrellusAug14<	PipistrellusJul45pipistrellusAug14pipistrellusMay37PipistrellusJun102pygmaeusJul75pygmaeusJul75pygmaeusAug19PipistrellusJul75pygmaeusMay00Plecotus auritusMay00Plecotus auritusJun00MyotisJun00PipistrellusJul21PipistrellusJul21PipistrellusJul21PipistrellusJul21PipistrellusJul21PipistrellusJul35pipistrellusJun0pipistrellusJun10pipistrellusJun3pipistrellusJul3pipistrellusJul3pipistrellusAug11fipistrellusSep50pipistrellusJun64pygmaeusJul54pygmaeusJul54pygmaeusJul54pygmaeusSep45PipistrellusJul54pygmaeusSep45PipistrellusJul54pygmaeusPipistrellusAug0Pipist	PipistrellusJul452PipistrellusAug143PipistrellusMay372PipistrellusJun1020pygmaeusJul751PipistrellusJul751PipistrellusJul751PipistrellusJul751PipistrellusJul751PipistrellusMay000Plectus auritusMay016MyotisJun001PipistrellusJul210PipistrellusJul210PipistrellusJul210PipistrellusJul210PipistrellusMay923pipistrellusJul352PipistrellusJul352PipistrellusAug1162PipistrellusAug1162PipistrellusJul541PipistrellusJul541PipistrellusJul541PipistrellusJul541PipistrellusJul541PipistrellusJul501PipistrellusAug1460Pipistrellus	PipistrellusJui4520pipistrellusAug1435PipistrellusMay3721PipistrellusJun10200pygmaeusJul7510PipistrellusJul7510pygmaeusJul7510PipistrellusJul7510pygmaeusNav0001Plectus auritusMay0001MyotisJun0011PipistrellusJul2100PipistrellusJul2100PipistrellusJul2100PipistrellusJul2100PipistrellusJul2100PipistrellusJun10011PipistrellusJul3520PipistrellusJul3520PipistrellusJul5410PipistrellusJul5410PipistrellusJul5410PipistrellusJul5410PipistrellusJul5410PipistrellusJul5410<

MS 19	Pipistrellus	Sep	1	0	0	0	0
MS 19	Pipistrellus pipistrellus	May	2	2	1	1	1
MS 19	Pipistrellus pipistrellus	Jun	1	3	3	0	0
MS 19	Pipistrellus pipistrellus	Jul	0	1	0	2	1
MS 19	Pipistrellus pipistrellus	Aug	2	4	2	0	2
MS 19	Pipistrellus pipistrellus	Sep	3	3	1	2	0
MS 19	Pipistrellus pygmaeus	May	4	0	1	1	3
MS 19	Pipistrellus pygmaeus	Jun	0	5	1	0	0
MS 19	Pipistrellus pygmaeus	Jul	0	1	1	1	4
MS 19	Pipistrellus pygmaeus	Aug	2	5	1	3	4
MS 19	Pipistrellus pygmaeus	Sep	1	1	5	1	1
MS 19	Plecotus auritus	May	0	0	0	0	2
MS 19	Plecotus auritus	Jun	0	0	0	2	1
MS 20	Myotis	May	0	0	0	0	3
MS 20	Myotis	Jun	0	0	0	1	4
MS 20	Pipistrellus pipistrellus	Мау	0	4	1	0	2
MS 20	Pipistrellus pipistrellus	Jun	1	2	2	0	2
MS 20	Pipistrellus pipistrellus	Jul	0	0	2	3	3
MS 20	Pipistrellus pipistrellus	Aug	0	1	6	3	4
MS 20	Pipistrellus pipistrellus	Sep	0	1	3	4	6
MS 20	Pipistrellus pygmaeus	May	0	3	2	0	3
MS 20	Pipistrellus pygmaeus	Jun	2	2	4	1	1
MS 20	Pipistrellus pygmaeus	Jul	0	1	3	2	2
MS 20	Pipistrellus pygmaeus	Aug	0	5	8	3	6

MS 20	Pipistrellus pygmaeus	Sep	0	2	7	5	5
MS 20	Plecotus auritus	May	0	0	0	0	1
MS 20	Plecotus auritus	Jun	0	0	0	0	2
MS 7	Pipistrellus pipistrellus	Aug	0	0	0	0	3
MS 7	Pipistrellus pipistrellus	Sep	0	0	0	0	3
MS 7	Pipistrellus pygmaeus	Aug	0	0	0	0	2
MS 7	Pipistrellus pygmaeus	Sep	0	0	0	0	10
MS 9	Pipistrellus pipistrellus	Jul	0	0	0	0	2
MS 9	Pipistrellus pipistrellus	Aug	0	0	1	2	0
MS 9	Pipistrellus pipistrellus	Sep	0	0	0	0	2
MS 9	Pipistrellus pygmaeus	Jul	0	0	0	0	2
MS 9	Pipistrellus pygmaeus	Aug	0	0	0	0	1
MS 9	Pipistrellus pygmaeus	Sep	0	0	0	0	3

Table 6. Summary table showing key metrics for each species recorded per month. Please note that we cannot split the reference range by month, hence this column is not shown in this table.

Detector ID	Species/Species Group	Month	Median Percentile	95% Cls	Max Percentile	Nights Recorded
MS 11	Pipistrellus pipistrellus	Jul	1	1 - 1	1	2
MS 11	Pipistrellus pipistrellus	Aug	1	1 - 1	31	3
MS 11	Pipistrellus pygmaeus	Jul	1	1 - 1	1	4
MS 11	Pipistrellus pygmaeus	Aug	1	1 - 1	31	5
MS 12	Myotis	Jun	1	1 - 1	31	4
MS 12	Pipistrellus pipistrellus	May	37	16 - 43	52	4
MS 12	Pipistrellus pipistrellus	Jun	16	16 - 43	83	10

MS 12	Pipistrellus pipistrellus	Jul	31	16 - 43	52	3
MS 12	Pipistrellus pipistrellus	Aug	31	16 - 43	58	8
MS 12	Pipistrellus pipistrellus	Sep	63	16 - 43	65	2
MS 12	Pipistrellus pygmaeus	May	22	16 - 33	86	4
MS 12	Pipistrellus pygmaeus	Jun	37	16 - 33	65	6
MS 12	Pipistrellus pygmaeus	Jul	1	16 - 33	31	3
MS 12	Pipistrellus pygmaeus	Aug	31	16 - 33	52	7
MS 12	Pipistrellus pygmaeus	Sep	1	16 - 33	43	8
MS 12	Plecotus auritus	May	1	0	1	1
MS 13	Myotis	Jun	1	0	1	1
MS 13	Pipistrellus pipistrellus	May	42	26.5 - 44.5	52	2
MS 13	Pipistrellus pipistrellus	Jun	43	26.5 - 44.5	67	7
MS 13	Pipistrellus pipistrellus	Jul	52	26.5 - 44.5	61	3
MS 13	Pipistrellus pipistrellus	Aug	31	26.5 - 44.5	80	8
MS 13	Pipistrellus pipistrellus	Sep	16	26.5 - 44.5	31	4
MS 13	Pipistrellus pygmaeus	May	22	16 - 37	43	2
MS 13	Pipistrellus pygmaeus	Jun	58	16 - 37	91	9
MS 13	Pipistrellus pygmaeus	Jul	1	16 - 37	31	5
MS 13	Pipistrellus pygmaeus	Aug	16	16 - 37	73	14
MS 13	Pipistrellus pygmaeus	Sep	31	16 - 37	43	7
MS 16	Myotis	May	1	1 - 1	1	1
MS 16	Myotis	Jun	1	1 - 1	1	1
MS 16	Pipistrellus pipistrellus	May	31	16 - 31	43	3

MS 16	Pipistrellus pipistrellus	Jun	31	16 - 31	61	5
MS 16	Pipistrellus pipistrellus	Jul	31	16 - 31	31	3
MS 16	Pipistrellus pipistrellus	Aug	1	16 - 31	52	6
MS 16	Pipistrellus pipistrellus	Sep	31	16 - 31	43	6
MS 16	Pipistrellus pygmaeus	May	70	29.5 - 52	84	8
MS 16	Pipistrellus pygmaeus	Jun	48	29.5 - 52	80	10
MS 16	Pipistrellus pygmaeus	Jul	1	29.5 - 52	31	5
MS 16	Pipistrellus pygmaeus	Aug	42	29.5 - 52	65	4
MS 16	Pipistrellus pygmaeus	Sep	52	29.5 - 52	92	11
MS 16	Plecotus auritus	May	1	1 - 1	1	2
MS 17	Myotis	May	48	44.5 - 61	71	12
MS 17	Myotis	Jun	58	44.5 - 61	75	11
MS 17	Pipistrellus	Jul	83	76 - 86	90	3
MS 17	Pipistrellus	Aug	81	76 - 86	82	3
MS 17	Pipistrellus pipistrellus	May	52	45.5 - 66.5	88	14
MS 17	Pipistrellus pipistrellus	Jun	83	45.5 - 66.5	93	14
MS 17	Pipistrellus pipistrellus	Jul	76	45.5 - 66.5	88	11
MS 17	Pipistrellus pipistrellus	Aug	31	45.5 - 66.5	80	18
MS 17	Pipistrellus pygmaeus	May	67	67.5 - 77.5	91	14
MS 17	Pipistrellus pygmaeus	Jun	86	67.5 - 77.5	95	14
MS 17	Pipistrellus pygmaeus	Jul	80	67.5 - 77.5	87	13
MS 17	Pipistrellus pygmaeus	Aug	69	67.5 - 77.5	85	16
MS 17	Plecotus auritus	May	1	1 - 1	31	5
MS 17	Plecotus auritus	Jun	1	1 - 1	31	5

MS 18	Myotis	May	43	22 - 43	65	11
MS 18	Myotis	Jun	16	22 - 43	43	4
MS 18	Pipistrellus	Jul	88	85 - 95	96	3
MS 18	Pipistrellus	Aug	91	85 - 95	98	6
MS 18	Pipistrellus	Sep	95	85 - 95	97	6
MS 18	Pipistrellus pipistrellus	May	84	72.5 - 83.5	93	15
MS 18	Pipistrellus pipistrellus	Jun	89	72.5 - 83.5	95	12
MS 18	Pipistrellus pipistrellus	Jul	75	72.5 - 83.5	89	10
MS 18	Pipistrellus pipistrellus	Aug	81	72.5 - 83.5	93	19
MS 18	Pipistrellus pipistrellus	Sep	87	72.5 - 83.5	91	8
MS 18	Pipistrellus pygmaeus	May	88	78.5 - 85.5	91	14
MS 18	Pipistrellus pygmaeus	Jun	83	78.5 - 85.5	95	12
MS 18	Pipistrellus pygmaeus	Jul	79	78.5 - 85.5	94	11
MS 18	Pipistrellus pygmaeus	Aug	86	78.5 - 85.5	97	20
MS 18	Pipistrellus pygmaeus	Sep	80	78.5 - 85.5	96	10
MS 18	Plecotus auritus	May	37	16 - 37	52	8
MS 18	Plecotus auritus	Jun	1	16 - 37	43	9
MS 19	Myotis	May	1	1 - 1	31	4
MS 19	Myotis	Jun	1	1 - 1	1	1
MS 19	Pipistrellus	Sep	95	0	95	1
MS 19	Pipistrellus pipistrellus	May	78	50.5 - 71	85	7
MS 19	Pipistrellus pipistrellus	Jun	65	50.5 - 71	83	7
MS 19	Pipistrellus pipistrellus	Jul	31	50.5 - 71	71	4
MS 19	Pipistrellus pipistrellus	Aug	73	50.5 - 71	95	10
MS 19	Pipistrellus pipistrellus	Sep	74	50.5 - 71	90	9
MS 19	Pipistrellus pygmaeus	May	43	36 - 57	86	9

MS 19	Pipistrellus pygmaeus	Jun	69	36 - 57	80	6
MS 19	Pipistrellus pygmaeus	Jul	1	36 - 57	74	7
MS 19	Pipistrellus pygmaeus	Aug	52	36 - 57	94	15
MS 19	Pipistrellus pygmaeus	Sep	52	36 - 57	92	9
MS 19	Plecotus auritus	May	1	1 - 16	1	2
MS 19	Plecotus auritus	Jun	31	1 - 16	31	3
MS 20	Myotis	May	1	1 - 1	1	3
MS 20	Myotis	Jun	1	1 - 1	31	5
MS 20	Pipistrellus pipistrellus	May	65	22 - 41.5	71	7
MS 20	Pipistrellus pipistrellus	Jun	52	22 - 41.5	83	7
MS 20	Pipistrellus pipistrellus	Jul	31	22 - 41.5	58	8
MS 20	Pipistrellus pipistrellus	Aug	37	22 - 41.5	65	14
MS 20	Pipistrellus pipistrellus	Sep	31	22 - 41.5	67	14
MS 20	Pipistrellus pygmaeus	May	51	31 - 44.5	75	8
MS 20	Pipistrellus pygmaeus	Jun	43	31 - 44.5	82	10
MS 20	Pipistrellus pygmaeus	Jul	37	31 - 44.5	67	8
MS 20	Pipistrellus pygmaeus	Aug	43	31 - 44.5	76	22
MS 20	Pipistrellus pygmaeus	Sep	31	31 - 44.5	70	19
MS 20	Plecotus auritus	May	1	1 - 1	1	1
MS 20	Plecotus auritus	Jun	1	1 - 1	1	2
MS 7	Pipistrellus pipistrellus	Aug	1	1 - 1	1	3
MS 7	Pipistrellus pipistrellus	Sep	1	1 - 1	1	3
MS 7	Pipistrellus pygmaeus	Aug	1	1 - 1	1	2
MS 7	Pipistrellus pygmaeus	Sep	1	1 - 1	1	10

MS 9	Pipistrellus pipistrellus	Jul	1	1 - 29.5	1	2
MS 9	Pipistrellus pipistrellus	Aug	31	1 - 29.5	58	3
MS 9	Pipistrellus pipistrellus	Sep	1	1 - 29.5	1	2
MS 9	Pipistrellus pygmaeus	Jul	1	1 - 1	1	2
MS 9	Pipistrellus pygmaeus	Aug	1	1 - 1	1	1
MS 9	Pipistrellus pygmaeus	Sep	1	1 - 1	1	3

9.4 PER SITE

In this 'Per Site' section of the analysis, all values are taken from across all of the detectors to provide site-wide averages/medians.

Table 7. Summary table showing the number of nights recorded bat activity fell into each activity band for each species.

Species/Species Group	Nights of High Activity	Nights of Moderate/ High Activity	Nights of Moderate Activity	Nights of Low/ Moderate Activity	Nights of Low Activity
Myotis	0	9	17	10	22
Pipistrellus	18	4	0	0	0
Pipistrellus pipistrellus	66	57	57	47	73
Pipistrellus pygmaeus	76	81	67	39	104
Plecotus auritus	0	0	5	9	24

Page Break

Table 8. Summary table showing key metrics for each species recorded.

Species/Species Group	Median Percentile	95% Cls	Max Percentile	Nights Recorded
Myotis	31	44.5 - 61	75	58
Pipistrellus	88	85 - 95	98	22
Pipistrellus pipistrellus	52	72.5 - 83.5	95	300
Pipistrellus pygmaeus	52	78.5 - 85.5	97	367
Plecotus auritus	1	16 - 37	52	38

Page Break

###Figures

Figure 4. The activity level (percentile) of bats recorded across each night of the bat survey for the entire site.

Page Break

Date

Page Break 9.5 PER SITE, PER MONTH

Table 9. Summary table showing the number of nights recorded bat activity fell into each activityband for each species during each month.

					Nights of	
		Nights of	Nights of	Nights of	Low/	Nights of
Species/Species		High	Moderate/	Moderate	Moderate	Low
Group	Month	Activity	High Activity	Activity	Activity	Activity
Myotis	May	0	4	12	6	9
Myotis	Jun	0	5	5	4	13

Pipistrellus	Jul	5	1	0	0	0
Pipistrellus	Aug	7	2	0	0	0
Pipistrellus	Sep	6	1	0	0	0
Pipistrellus pipistrellus	May	15	11	10	5	11
Pipistrellus pipistrellus	Jun	21	13	11	5	12
Pipistrellus pipistrellus	Jul	7	12	8	9	10
Pipistrellus pipistrellus	Aug	15	15	21	17	24
Pipistrellus pipistrellus	Sep	8	6	7	11	16
Pipistrellus pygmaeus	May	22	13	9	3	12
Pipistrellus pygmaeus	Jun	19	20	13	5	10
Pipistrellus pygmaeus	Jul	12	11	6	7	22
Pipistrellus pygmaeus	Aug	17	27	20	13	29
Pipistrellus pygmaeus	Sep	6	10	19	11	31
Plecotus auritus	May	0	0	4	3	12
Plecotus auritus	Jun	0	0	1	6	12

Table 10. Summary table showing key metrics for each species recorded per month.

Species/Species Group	Month	Median Percentile	95% Cls	Max Percentile	Nights Recorded
Myotis	May	43	44.5 - 61	71	31
Myotis	Jun	31	44.5 - 61	75	27
Pipistrellus	Jul	86	85 - 95	96	6
Pipistrellus	Aug	87	85 - 95	98	9
Pipistrellus	Sep	95	85 - 95	97	7
Pipistrellus pipistrellus	May	60	72.5 - 83.5	93	52
Pipistrellus pipistrellus	Jun	63	72.5 - 83.5	95	62
Pipistrellus pipistrellus	Jul	52	72.5 - 83.5	89	46

Pipistrellus pipistrellus	Aug	43	72.5 - 83.5	95	92
Pipistrellus pipistrellus	Sep	31	72.5 - 83.5	91	48
Pipistrellus pygmaeus	May	70	78.5 - 85.5	91	59
Pipistrellus pygmaeus	Jun	67	78.5 - 85.5	95	67
Pipistrellus pygmaeus	Jul	37	78.5 - 85.5	94	58
Pipistrellus pygmaeus	Aug	52	78.5 - 85.5	97	106
Pipistrellus pygmaeus	Sep	31	78.5 - 85.5	96	77
Plecotus auritus	May	1	16 - 37	52	19
Plecotus auritus	Jun	1	16 - 37	43	19

###Figures

Figure 6. The activity level (percentile) of bats recorded across each night of the bat survey for the entire site, split between months.

Species

Page Break

9.6 PART 2: Nightly Analysis

10 ENTIRE SURVEY PERIOD

10.1 Sunrise and Sunset Times

Table 11. The times of sunset and sunrise the following morning for surveys beginning on the date shown.

2019-07-16	21:57 C	05:01 7.1
------------	---------	-----------

2019-07-17	21:56	05:02	7.1
2019-07-18	21:54	05:04	7.2
2019-07-19	21:53	05:05	7.2
2019-07-20	21:51	05:07	7.3
2019-07-22	21:48	05:10	7.4
2019-07-23	21:47	05:12	7.4
2019-07-24	21:45	05:14	7.5
2019-07-25	21:43	05:15	7.5
2019-07-26	21:42	05:17	7.6
2019-07-28	21:38	05:21	7.7
2019-07-29	21:36	05:23	7.8
2019-07-30	21:34	05:24	7.8
2019-07-31	21:32	05:26	7.9
2019-08-01	21:31	05:28	8.0
2019-08-02	21:29	05:30	8.0
2019-08-03	21:27	05:32	8.1
2019-08-04	21:25	05:34	8.2
2019-08-05	21:23	05:36	8.2
2019-08-06	21:20	05:38	8.3
2019-08-07	21:18	05:40	8.4
2019-08-08	21:16	05:41	8.4
2019-08-10	21:12	05:45	8.6
2019-08-11	21:10	05:47	8.6
2019-08-12	21:07	05:49	8.7
2019-08-13	21:05	05:51	8.8
2019-08-15	21:01	05:55	8.9
2019-08-16	20:58	05:57	9.0
2019-08-17	20:56	05:59	9.1
2019-08-18	20:54	06:01	9.1
2019-08-20	20:49	06:05	9.3
2019-08-21	20:46	06:07	9.3
2019-08-22	20:44	06:09	9.4
2019-08-23	20:41	06:11	9.5
2019-08-24	20:39	06:13	9.6
2019-08-25	20:37	06:15	9.6
2019-08-26	20:34	06:16	9.7
2019-08-27	20:32	06:18	9.8
2019-08-28	20:29	06:20	9.9
2019-08-31	20:21	06:26	10.1

2019-09-01	20:19	06:28	10.2
2019-09-04	20:11	06:34	10.4
2019-09-05	20:09	06:36	10.5
2019-09-06	20:06	06:38	10.5
2019-09-07	20:03	06:40	10.6
2019-09-08	20:01	06:42	10.7
2019-09-09	19:58	06:44	10.8
2019-09-11	19:53	06:47	10.9
2019-09-12	19:50	06:49	11.0
2019-09-13	19:48	06:51	11.1
2019-09-14	19:45	06:53	11.1
2019-09-15	19:42	06:55	11.2
2019-09-16	19:40	06:57	11.3
2019-09-17	19:37	06:59	11.4
2019-09-18	19:34	07:01	11.4
2019-09-19	19:32	07:03	11.5
2019-09-20	19:29	07:05	11.6
2019-09-21	19:26	07:07	11.7
2019-09-22	19:24	07:08	11.7
2019-09-23	19:21	07:10	11.8
2019-09-24	19:18	07:12	11.9
2019-09-26	19:13	07:16	12.1
2019-09-29	19:05	07:22	12.3
2019-09-30	19:02	07:24	12.4
2020-05-15	21:27	05:08	7.7
2020-05-16	21:29	05:06	7.6
2020-05-17	21:31	05:05	7.6
2020-05-18	21:33	05:03	7.5
2020-05-19	21:35	05:01	7.4
2020-05-20	21:36	05:00	7.4
2020-05-21	21:38	04:58	7.3
2020-05-22	21:40	04:57	7.3
2020-05-23	21:42	04:55	7.2
2020-05-24	21:43	04:54	7.2
2020-05-25	21:45	04:52	7.1
2020-05-26	21:46	04:51	7.1
2020-05-27	21:48	04:50	7.0
2020-05-28	21:49	04:49	7.0
2020-05-29	21:51	04:47	6.9

2020-05-30	21:52	04:46	6.9
2020-05-31	21:54	04:45	6.9
2020-06-01	21:55	04:44	6.8
2020-06-02	21:56	04:43	6.8
2020-06-03	21:58	04:42	6.7
2020-06-04	21:59	04:42	6.7
2020-06-05	22:00	04:41	6.7
2020-06-06	22:01	04:40	6.6
2020-06-07	22:02	04:40	6.6
2020-06-08	22:03	04:39	6.6
2020-06-09	22:04	04:38	6.6
2020-06-10	22:05	04:38	6.5
2020-06-11	22:06	04:38	6.5
2020-06-12	22:07	04:37	6.5
2020-06-13	22:07	04:37	6.5
2020-06-14	22:08	04:37	6.5
2020-06-15	22:09	04:37	6.5

11 DISTRIBUTION OF BAT ACTIVITY ACROSS THE NIGHT THROUGH TIME

11.1 Per Detector

Figure 7. Timing of bat calls plotted as minutes before/after sunset, whereby 0 on the y axis represents sunset. Sunrise throughout the survey period is depicted as the red dashed line. Colours indicate kernel densities, with darkest colours showing peaks of activity. These colours are comparative only within each plot, and do not account for overall activity.

12 ROOST EMERGENCE TIME AND BAT OBSERVATION

Based on: *Russ, Jon. 2012. British Bat Calls a Guide to species Identification. Pelagic Publishing.* For more information see <u>https://rbats-blog.updog.co/2018/05/29/bat-emergence/</u>

12.1 Bat Passes Potentially Indicating Close Proximity to a Roost (Russ 2012) - Table

Table 12. Number of bat calls recorded before the upper time of the species-specific emergencetime range, and which therefore may potentially indicate the presence of a nearby roost.

Table continues below

Species		Detect ID	or	2019-0 [°] 16	7-	2019-07 19	-	2019-07- 20	20 22	19-07-	2019-07- 23	
Pipistrellus		MS 18		0		0		0	0		0	
Common pipistrelle		MS 16		0		0		0	0		0	
Common pipistrelle		MS 17		1		2		0	1		0	
Common pipistrelle		MS 18		0		0		0	0		1	
Common pipistrelle		MS 19		0		0		0	0		0	
Common pipistrelle		MS 20		0		0		0	0		0	
Soprano pipistrelle		MS 16		0		0		0	0		0	
Soprano pipistrelle		MS 17		2		1		1	0		0	
Soprano pipistrelle		MS 18		0		0		0	0		0	
Soprano pipistrelle		MS 19		0		0		0	0		0	
Soprano pipistrelle		MS 20		0		0		0	0		0	
Brown long-e Table continue	ared s below	MS 17 /		0		0		0	0		0	
2019-07-24	2019-0	07-25	2019-	07-28	201	9-07-31	20	19-08-01	2019	-08-02	2019-08-03	
0	0		0		0		0		0		0	-
0	0		0		0		0		0		0	
1	0		0		0		0		0		0	
0	2		0		3		2		1		4	
0	0		0		0		0		0		0	
0	0		0		0		0		0		0	
0	0		0		0		0		0		0	
1	1		2		1		0		0		0	
1	2		0		0		0		0		4	
0	0		0		0		0		0		0	
0	0		0		0		0		0		0	
0	0		0		0		0		0		0	
Table continue	es below	/										
2019-08-04	2019-0	08-05	2019-	08-06	201	9-08-08	20	19-08-10	2019	-08-12	2019-08-13	

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
2	1	4	2	3	1	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	0	0	2	0	1
0	1	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
Table continue	es below					
2019-08-15	2019-08-17	2019-08-20	2019-08-23	2019-08-24	2019-08-25	2019-08-26
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
2	0	1	0	2	0	0
0	0	0	0	1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	1	4	2	3	3	1
0	0	0	1	1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
Table continue	es below					
2019-08-27	2019-09-07	2019-09-08	2019-09-13	2019-09-17	2019-09-18	2019-09-19
0	0	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	2	3	1	6	0
0	0	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	1	0	4	2	0	0
0	0	0	0	0	1	0
0	0	0	0	0	0	0

0 Table continue	0 es below	0	0	0	0	0
2020-05-16	2020-05-18	2020-05-19	2020-05-20	2020-05-21	2020-05-22	2020-05-24
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	33	4	0	1	0
0	0	1	0	4	0	0
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0
2	2	5	1	7	0	0
9	0	8	1	0	0	14
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
Table continue	es below					
2020-05-25	2020-05-27	2020-05-28	2020-05-29	2020-05-30	2020-05-31	2020-06-01
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	2	0	0	0	0
0	12	1	2	1	1	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	1	0	8
0	1	12	1	0	0	0
1	0	0	0	0	0	0
0	0	1	0	0	0	0
0	0	1	0	0	0	0
1	0	0	0	0	0	0
Table continue	es below					
2020-06-02	2020-06-04	2020-06-05	2020-06-06	2020-06-07	2020-06-08	2020-06-09
0	0	0	0	0	0	0
3	0	0	0	0	0	0
0	3	5	0	12	6	16
2	1	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
6	3	0	0	1	0	0
0	0	5	0	20	27	4

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	1
0	0	0	0	0	0	0
2020-06-10		2020-06-11	2020-06-12	2020-06-13	2020-06-14	2020-06-15
0		0	0	0	0	0
0		0	0	0	0	1
2		0	9	0	5	2
0		0	0	0	28	0
0		0	0	0	0	0
0		0	0	0	0	0
0		0	1	0	0	1
1		1	51	6	22	3
0		1	0	0	0	0
0		1	0	0	0	0
0		1	0	0	0	0
0		0	0	1	0	0

Bat Passes Potentially Indicating Close Proximity to a Roost (Russ 2012) - Figures

Figure 8. Time from 15 minutes before to 90 minutes after sunset. Species-specific emergence time ranges are shown as grey bars. Bat passes overlapping species-specific grey bars, or occuring earlier than this time range, may potentially indicate the presence of a nearby roost.

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

Page Break 13 COUNTS OF BAT PASSES

13.1 All detectors

Table 14. The total number of passes recorded for each species across all of the detectors. The 'Total' percentage may not be exactly 100% due to rounding of the percentages per species.

Species	Passes (No.)	Percentage of total (%)
Pipistrellus	2601	17.3
Common pipistrelle	5086	33.9
Soprano pipistrelle	7081	47.2
Brown long-eared	59	0.4
Myotis	187	1.2
Total	15014	100.0

Page Break

14 COUNTS OF BAT PASSES

14.1 Per Detector

Table 15. The number of passes recorded for each species at each detector.

Species	Detector ID	Count (No)	Percentage by Detector (%)
Pipistrellus	MS 17	177	5.6
Pipistrellus	MS 18	2238	25.1
Pipistrellus	MS 19	186	11.9
Common pipistrelle	MS 11	6	37.5
Common pipistrelle	MS 12	100	49.3
Common pipistrelle	MS 13	84	30.8
Common pipistrelle	MS 16	48	13.0
Common pipistrelle	MS 17	1121	35.7
Common pipistrelle	MS 18	2828	31.7
Common pipistrelle	MS 19	698	44.7
Common pipistrelle	MS 20	182	37.6
Common pipistrelle	MS 7	6	33.3
Common pipistrelle	MS 9	13	68.4
Soprano pipistrelle	MS 11	10	62.5
Soprano pipistrelle	MS 12	97	47.8
Soprano pipistrelle	MS 13	188	68.9
Soprano pipistrelle	MS 16	318	85.9
Soprano pipistrelle	MS 17	1705	54.3
Soprano pipistrelle	MS 18	3790	42.5

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

Soprano pipistrelle	MS 19	665	42.6
Soprano pipistrelle	MS 20	290	59.9
Soprano pipistrelle	MS 7	12	66.7
Soprano pipistrelle	MS 9	6	31.6
Brown long-eared	MS 12	1	0.5
Brown long-eared	MS 16	2	0.5
Brown long-eared	MS 17	12	0.4
Brown long-eared	MS 18	34	0.4
Brown long-eared	MS 19	7	0.4
Brown long-eared	MS 20	3	0.6
Myotis	MS 12	5	2.5
Myotis	MS 13	1	0.4
Myotis	MS 16	2	0.5
Myotis	MS 17	126	4.0
Myotis	MS 18	38	0.4
Myotis	MS 19	6	0.4
Myotis	MS 20	9	1.9

15 SPECIES COMPOSITION

Figure 10. Percentage species composition of passes at each detector.

Detector ID

Page Break 15.1 PART 2a: Presence Only

THE NEXT SECTION OF THE REPORT FEATURES THE RAW DATA SUPPLIED TO ECOBAT AND ONLY TAKES INTO ACCOUNT THE PRESENCE, AND NOT THE ABSENCE, OF EACH BAT SPECIES. FOR EACH NIGHT, THERE IS NO 'ZERO DATA' FOR WHEN SPECIES WERE NOT DETECTED.

Page Break

15.2 Nightly Bat Pass Rate (Bat passes per hour)

16 MEDIAN PER DETECTOR

Table 16. The median Nightly Pass Rate (bat passes per hour, per night) of each species. If NA, then no bat passes.

Bat pass rates are often highly variable between nights, with some nights having few or no passes and other nights having high activity. In these circumstances, the median is likely to be a more useful summary of the 'average' activity than is the mean. For further information see: *Lintott, P. R., & Mathews, F. (2018). Basic mathematical errors may make ecological assessments unreliable. Biodiversity and Conservation, 27(1), 265-267.* <u>https://doi.org/10.1007/s10531-017-1418-5</u>

Species	Detector ID	Median Pass Rate
Pipistrellus	MS 17	2.9
Pipistrellus	MS 18	14.8

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

MS 19	16.8
MS 11	0.1
MS 12	0.3
MS 13	0.3
MS 16	0.2
MS 17	0.9
MS 18	3.2
MS 19	1.1
MS 20	0.3
MS 7	0.1
MS 9	0.1
MS 11	0.1
MS 12	0.2
MS 13	0.2
MS 16	0.4
MS 17	1.6
MS 18	4.5
MS 19	0.4
MS 20	0.3
MS 7	0.1
MS 9	0.1
MS 12	0.1
MS 16	0.1
MS 17	0.2
MS 18	0.3
MS 19	0.2
MS 20	0.2
MS 12	0.2
MS 13	0.2
MS 16	0.2
MS 17	0.6
MS 18	0.4
MS 19	0.2
MS 20	0.2
	MS 19 MS 11 MS 12 MS 13 MS 16 MS 17 MS 18 MS 19 MS 20 MS 7 MS 9 MS 11 MS 12 MS 13 MS 16 MS 17 MS 18 MS 19 MS 20 MS 7 MS 20 MS 7 MS 18 MS 19 MS 20 MS 12 MS 16 MS 17 MS 18 MS 19 MS 12 MS 18 MS 19 MS 12 MS 13 MS 16 MS 17 MS 18 MS 19 MS 20

Page Break 16.1 Nightly Bat Pass Rate (Bat passes per hour)

17 MEAN PER DETECTOR

Table 17. The mean Nightly Pass Rate (bat passes per hour, per night) of each species at each detector. Values are given to 1 decimal place.

We recommend using the median values given above, for the reasons stated above, but provide the mean values in the table below.

Species	Detector ID	Mean Pass Rate
Pipistrellus	MS 17	3.7
Pipistrellus	MS 18	16.0
Pipistrellus	MS 19	16.8
Common pipistrelle	MS 11	0.1
Common pipistrelle	MS 12	0.5
Common pipistrelle	MS 13	0.4
Common pipistrelle	MS 16	0.3
Common pipistrelle	MS 17	2.8
Common pipistrelle	MS 18	5.7
Common pipistrelle	MS 19	2.2
Common pipistrelle	MS 20	0.5
Common pipistrelle	MS 7	0.1
Common pipistrelle	MS 9	0.2
Soprano pipistrelle	MS 11	0.1
Soprano pipistrelle	MS 12	0.5
Soprano pipistrelle	MS 13	0.7
Soprano pipistrelle	MS 16	1.0
Soprano pipistrelle	MS 17	4.3
Soprano pipistrelle	MS 18	7.0
Soprano pipistrelle	MS 19	1.7
Soprano pipistrelle	MS 20	0.5
Soprano pipistrelle	MS 7	0.1
Soprano pipistrelle	MS 9	0.1
Brown long-eared	MS 12	0.1
Brown long-eared	MS 16	0.1
Brown long-eared	MS 17	0.2
Brown long-eared	MS 18	0.3
Brown long-eared	MS 19	0.2
Brown long-eared	MS 20	0.2
Myotis	MS 12	0.2

Myotis	MS 13	0.2
Myotis	MS 16	0.2
Myotis	MS 17	0.8
Myotis	MS 18	0.4
Myotis	MS 19	0.2
Myotis	MS 20	0.2

18 NIGHTLY BAT PASSES (BAT PASSES PER HOUR)

18.1 Per Detector - Figures

Figure 11. Boxplots for the number of bat passes per hour each night, for each detector. The 'box' shows the interquartile range, which is where the middle 50% of the data lie. The line dividing the box is the median, the mid-point of the data. The 'whiskers' extend from the box and represent the ranges for the bottom 25% and the top 25% of the data values, excluding outliers. An outlier is any extreme value that lies further away from the box than 1.5 times the interquartile range. Outliers are shown as dots. Where very few passes are recorded it is not possible to produce the box, so the data are shown as a line.

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

19 SPLIT BY MONTH

20 TOTAL BAT PASSES PER DETECTOR, EACH MONTH

20.1 Per Detector

Table 18. The total number of bat passes of each species in each month at each detector. This table simply tells you how many bats of each species were recorded passing each detector during each month. These numbers are not standardised by the night length, or how many nights each detector was active for during each month.

Species	Detector ID	May	Jun	Jul	Aug	Sep
Pipistrellus	MS 17	0	0	123	54	0
Pipistrellus	MS 18	0	0	322	1008	908
Pipistrellus	MS 19	0	0	0	0	186
Common pipistrelle	MS 11	0	0	2	4	0
Common pipistrelle	MS 12	10	50	8	19	13
Common pipistrelle	MS 13	6	24	11	37	6
Common pipistrelle	MS 16	6	14	5	11	12
Common pipistrelle	MS 17	217	596	226	82	0
Common pipistrelle	MS 18	786	776	183	751	332
Common pipistrelle	MS 19	100	73	15	299	211
Common pipistrelle	MS 20	39	56	17	38	32
Common pipistrelle	MS 7	0	0	0	3	3
Common pipistrelle	MS 9	0	0	2	9	2
Soprano pipistrelle	MS 11	0	0	4	6	0
Soprano pipistrelle	MS 12	46	20	4	16	11
Soprano pipistrelle	MS 13	4	131	6	33	14
Soprano pipistrelle	MS 16	86	58	7	14	153
Soprano pipistrelle	MS 17	366	932	243	164	0
Soprano pipistrelle	MS 18	828	654	341	1322	645
Soprano pipistrelle	MS 19	132	56	21	310	146
Soprano pipistrelle	MS 20	47	75	25	89	54
Soprano pipistrelle	MS 7	0	0	0	2	10
Soprano pipistrelle	MS 9	0	0	2	1	3
Brown long-eared	MS 12	1	0	0	0	0
Brown long-eared	MS 16	2	0	0	0	0
Brown long-eared	MS 17	6	6	0	0	0
Brown long-eared	MS 18	20	14	0	0	0
Brown long-eared	MS 19	2	5	0	0	0

Brown long-eared	MS 20	1	2	0	0	0
Myotis	MS 12	0	5	0	0	0
Myotis	MS 13	0	1	0	0	0
Myotis	MS 16	1	1	0	0	0
Myotis	MS 17	50	76	0	0	0
Myotis	MS 18	31	7	0	0	0
Myotis	MS 19	5	1	0	0	0
Myotis	MS 20	3	6	0	0	0

21 SURVEY EFFORT

Table 19. The number of survey nights per month per detector.

Month	Detector ID	No. of Survey Nights
May	MS 12	4
May	MS 13	3
May	MS 16	8
May	MS 17	16
May	MS 18	17
May	MS 19	10
May	MS 20	9
Jun	MS 12	11
Jun	MS 13	10
Jun	MS 16	11
Jun	MS 17	14
Jun	MS 18	14
Jun	MS 19	7
Jun	MS 20	12
Jul	MS 11	6
Jul	MS 12	5
Jul	MS 13	6
Jul	MS 16	5
Jul	MS 17	13
Jul	MS 18	11
Jul	MS 19	8
Jul	MS 20	11
Jul	MS 9	2
Aug	MS 11	6
Aug	MS 12	11
Aug	MS 13	16

Aug	MS 16	7
Aug	MS 17	18
Aug	MS 18	20
Aug	MS 19	16
Aug	MS 20	24
Aug	MS 7	4
Aug	MS 9	3
Sep	MS 12	8
Sep	MS 13	9
Sep	MS 16	11
Sep	MS 18	11
Sep	MS 19	9
Sep	MS 20	21
Sep	MS 7	12
Sep	MS 9	4

21.1 Nightly Bat Pass Rate for each Month

22 MEDIAN PER DETECTOR

Table 20. The median Nightly Pass Rate (bat passes per hour, per night) of each species throughout each month. If NA, then no bat passes.

Bat pass rates are often highly variable between nights, with some nights having few or no passes and other nights having high activity. In these circumstances, the median is likely to be a more useful summary of the 'average' activity than is the mean. For further information see: *Lintott, P. R., & Mathews, F. (2018). Basic mathematical errors may make ecological assessments unreliable. Biodiversity and Conservation, 27(1), 265-267.* <u>https://doi.org/10.1007/s10531-017-1418-5</u>

Species	Detector ID	May	Jun	Jul	Aug	Sep
Pipistrellus	MS 17	NA	NA	3.2	2.4	NA
Pipistrellus	MS 18	NA	NA	7.7	13.3	16.5
Pipistrellus	MS 19	NA	NA	NA	NA	16.8
Common pipistrelle	MS 11	NA	NA	0.1	0.1	NA
Common pipistrelle	MS 12	0.4	0.2	0.3	0.2	0.6
Common pipistrelle	MS 13	0.4	0.4	0.5	0.2	0.1
Common pipistrelle	MS 16	0.3	0.3	0.3	0.1	0.2
Common pipistrelle	MS 17	0.6	3.9	1.8	0.2	NA
Common pipistrelle	MS 18	3.9	9.4	1.8	2.8	4.1
Common pipistrelle	MS 19	2.3	1.1	0.3	1.3	1.1
Common pipistrelle	MS 20	1.0	0.6	0.3	0.3	0.2
Common pipistrelle	MS 7	NA	NA	NA	0.1	0.1

Common pipistrelle	MS 9	NA	NA	0.1	0.2	0.1
Soprano pipistrelle	MS 11	NA	NA	0.1	0.1	NA
Soprano pipistrelle	MS 12	0.3	0.4	0.1	0.2	0.1
Soprano pipistrelle	MS 13	0.3	0.7	0.1	0.2	0.2
Soprano pipistrelle	MS 16	1.3	0.5	0.1	0.4	0.4
Soprano pipistrelle	MS 17	1.1	5.6	2.6	1.1	NA
Soprano pipistrelle	MS 18	8.6	4.2	2.3	4.6	1.7
Soprano pipistrelle	MS 19	0.4	1.4	0.1	0.4	0.3
Soprano pipistrelle	MS 20	0.6	0.5	0.3	0.4	0.2
Soprano pipistrelle	MS 7	NA	NA	NA	0.1	0.1
Soprano pipistrelle	MS 9	NA	NA	0.1	0.1	0.1
Brown long-eared	MS 12	0.1	NA	NA	NA	NA
Brown long-eared	MS 16	0.1	NA	NA	NA	NA
Brown long-eared	MS 17	0.1	0.2	NA	NA	NA
Brown long-eared	MS 18	0.4	0.2	NA	NA	NA
Brown long-eared	MS 19	0.1	0.3	NA	NA	NA
Brown long-eared	MS 20	0.2	0.2	NA	NA	NA
Myotis	MS 12	NA	0.2	NA	NA	NA
Myotis	MS 13	NA	0.2	NA	NA	NA
Myotis	MS 16	0.2	0.2	NA	NA	NA
Myotis	MS 17	0.5	0.8	NA	NA	NA
Myotis	MS 18	0.4	0.2	NA	NA	NA
Myotis	MS 19	0.1	0.2	NA	NA	NA
Myotis	MS 20	0.1	0.2	NA	NA	NA

22.1 Nightly Bat Pass Rate for each Month

23 MEAN PER DETECTOR

Table 21: The mean Nightly Pass Rate (bat passes per hour, per night) of each species throughout each month. Values are given to 1 decimal place.

We recommend using the median values given above, for the reasons stated above, but provide the mean values in the table below.

Species	Detector ID	May	Jun	Jul	Aug	Sep
Pipistrellus	MS 17	NA	NA	5.4	2.0	NA
Pipistrellus	MS 18	NA	NA	13.9	19.6	13.4
Pipistrellus	MS 19	NA	NA	NA	NA	16.8
Common pipistrelle	MS 11	NA	NA	0.1	0.2	NA
Common pipistrelle	MS 12	0.4	0.7	0.3	0.3	0.6
Common pipistrelle	MS 13	0.4	0.5	0.5	0.5	0.1

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

Common pipistrelle	MS 16	0.3	0.4	0.2	0.2	0.2
Common pipistrelle	MS 17	2.2	6.5	2.8	0.5	NA
Common pipistrelle	MS 18	7.3	9.7	2.4	4.6	3.7
Common pipistrelle	MS 19	2.1	1.6	0.5	3.5	2.1
Common pipistrelle	MS 20	0.8	1.2	0.3	0.3	0.2
Common pipistrelle	MS 7	NA	NA	NA	0.1	0.1
Common pipistrelle	MS 9	NA	NA	0.1	0.4	0.1
Soprano pipistrelle	MS 11	NA	NA	0.1	0.1	NA
Soprano pipistrelle	MS 12	1.6	0.5	0.2	0.2	0.1
Soprano pipistrelle	MS 13	0.3	2.2	0.2	0.3	0.2
Soprano pipistrelle	MS 16	1.5	0.9	0.2	0.4	1.3
Soprano pipistrelle	MS 17	3.7	10.1	2.5	1.2	NA
Soprano pipistrelle	MS 18	8.3	8.2	4.1	7.5	5.7
Soprano pipistrelle	MS 19	2.1	1.4	0.4	2.4	1.5
Soprano pipistrelle	MS 20	0.8	1.1	0.4	0.4	0.3
Soprano pipistrelle	MS 7	NA	NA	NA	0.1	0.1
Soprano pipistrelle	MS 9	NA	NA	0.1	0.1	0.1
Brown long-eared	MS 12	0.1	NA	NA	NA	NA
Brown long-eared	MS 16	0.1	NA	NA	NA	NA
Brown long-eared	MS 17	0.2	0.2	NA	NA	NA
Brown long-eared	MS 18	0.4	0.2	NA	NA	NA
Brown long-eared	MS 19	0.1	0.3	NA	NA	NA
Brown long-eared	MS 20	0.2	0.2	NA	NA	NA
Myotis	MS 12	NA	0.2	NA	NA	NA
Myotis	NAC 10	NIA	0.2	NIA	ΝΔ	NΑ
	IVIS 13	NA	0.2	ΝA		
Myotis	MS 13 MS 16	NA 0.2	0.2	NA	NA	NA
Myotis Myotis	MS 13 MS 16 MS 17	NA 0.2 0.6	0.2 0.2 1.0	NA NA NA	NA NA	NA NA
Myotis Myotis Myotis	MS 13 MS 16 MS 17 MS 18	0.2 0.6 0.4	0.2 0.2 1.0 0.3	NA NA NA	NA NA NA	NA NA NA
Myotis Myotis Myotis Myotis	MS 13 MS 16 MS 17 MS 18 MS 19	0.2 0.6 0.4 0.2	0.2 0.2 1.0 0.3 0.2	NA NA NA NA	NA NA NA NA	NA NA NA NA

23.1 Nightly Bat Pass Rate for each Month

23.2 Per Detector - Figures

Figure 12. Figures show boxplots for the number of bat passes per hour by detector, for each month. The 'box' shows the interquartile range, which is where the middle 50% of the data lie. The line dividing the box is the median, the mid-point of the data. The 'whiskers' extend from the box and represent the ranges for the bottom 25% and the top 25% of the data values, excluding outliers. An outlier is any extreme value that lies further away from the box than 1.5 times the
interquartile range. Outliers are shown as dots. Where very few passes are recorded it is not possible to produce the box, so the data are shown as a line.

Common pipistrelle May Jun Jul Nightly Pass Rate (passes/hr/night) 30 20 10 0 MS 12-MS 13-MS 16-MS 18-MS 19-MS 9-MS 17-MS 20-MS 7-MS 11 -Aug Sep 30 20 10 0 MS 12-MS 13-MS 16-MS 18-MS 19-MS 9-MS 12-MS 13-MS 9-MS 17-MS 20-MS 7-MS 18-MS 19-MS 20-MS 7-MS 11 ف **MS 11** 1 MS 1 MS¹

Detector ID

Detector ID

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

Page Break 24 BAT ACTIVITY PER DETECTOR LOCATION

Page Break

Figure 14. Median Nightly Pass Rate (bat passes/hr/night) throughout the survey period - represented by the size and colour of the point at each detector location.

Figure 15. Maximum Nightly Pass Rate (bat passes/hr/night) recorded in a single night throughout the survey period - represented by the size and colour of the point at each detector location.

24.1 PART 2B: Includes absences

THE NEXT SECTION OF THE REPORT FEATURES THE DATA SUPPLIED TO ECOBAT BUT TAKES INTO ACCOUNT SPECIES ABSENCES, AND THEREFORE INCLUDES 'ZERO DATA' FOR WHEN SPECIES WERE NOT DETECTED AT EACH DETECTOR ON A NIGHT. THIS DRAMATICALLY LOWERS THE MEANS AND MEDIANS OF THE DATA PRESENTED.

Page Break 24.2 Nightly Bat Pass Rate (Bat passes per hour)

25 MEDIAN PER DETECTOR

Table 22. The median Nightly Pass Rate (bat passes per hour, per night) of each species. If NA, then no bat passes.

Bat pass rates are often highly variable between nights, with some nights having few or no passes and other nights having high activity. In these circumstances, the median is likely to be a more useful summary of the 'average' activity than is the mean. For further information see: *Lintott, P. R., & Mathews, F. (2018). Basic mathematical errors may make ecological assessments unreliable. Biodiversity and Conservation, 27(1), 265-267.* <u>https://doi.org/10.1007/s10531-017-1418-5</u>

MS 11 MS 12 MS 13 MS 16 MS 17 MS 18 MS 19	0.0 0.0 0.0 0.0 0.0 0.0
MS 12 MS 13 MS 16 MS 17 MS 18 MS 19	0.0 0.0 0.0 0.0
MS 13 MS 16 MS 17 MS 18 MS 19	0.0 0.0 0.0 0.0
MS 16 MS 17 MS 18 MS 19	0.0 0.0 0.0
MS 17 MS 18 MS 19	0.0 0.0
MS 18 MS 19	0.0
MS 19	
	0.0
MS 20	0.0
MS 7	0.0
MS 9	0.0
MS 11	0.0
MS 12	0.2
MS 13	0.1
MS 16	0.1
MS 17	0.9
MS 18	2.8
MS 19	0.4
MS 20	0.1
MS 7	0.0
MS 9	0.1
MS 11	0.0
MS 12	0.0
MS 13	0.0
MS 16	0.0
MS 17	0.0
MS 18	0.0
MS 19	0.0
MS 20	0.0
	MS 19 MS 20 MS 7 MS 9 MS 11 MS 12 MS 13 MS 16 MS 17 MS 18 MS 19 MS 20 MS 7 MS 9 MS 11 MS 20 MS 11 MS 12 MS 13 MS 16 MS 13 MS 16 MS 17 MS 18 MS 17 MS 18 MS 19 MS 18 MS 19 MS 20

Myotis	MS 7	0.0
Myotis	MS 9	0.0
Pipistrellus	MS 11	0.0
Pipistrellus	MS 12	0.0
Pipistrellus	MS 13	0.0
Pipistrellus	MS 16	0.0
Pipistrellus	MS 17	0.0
Pipistrellus	MS 18	0.0
Pipistrellus	MS 19	0.0
Pipistrellus	MS 20	0.0
Pipistrellus	MS 7	0.0
Pipistrellus	MS 9	0.0
Soprano pipistrelle	MS 11	0.1
Soprano pipistrelle	MS 12	0.1
Soprano pipistrelle	MS 13	0.2
Soprano pipistrelle	MS 16	0.3
Soprano pipistrelle	MS 17	1.5
Soprano pipistrelle	MS 18	3.7
Soprano pipistrelle	MS 19	0.4
Soprano pipistrelle	MS 20	0.3
Soprano pipistrelle	MS 7	0.1
Soprano pipistrelle	MS 9	0.1

25.1 Nightly Bat Pass Rate (Bat passes per hour)

26 MEAN PER DETECTOR

Table 23. The mean Nightly Pass Rate (bat passes per hour, per night) of each species at each detector. Values are given to 1 decimal place.

We recommend using the median values given above, for the reasons stated above, but provide the mean values in the table below.

Species	Detector ID	Mean Pass Rate
Brown long-eared	MS 11	0.0
Brown long-eared	MS 12	0.0
Brown long-eared	MS 13	0.0
Brown long-eared	MS 16	0.0
Brown long-eared	MS 17	0.0
Brown long-eared	MS 18	0.1
Brown long-eared	MS 19	0.0
Brown long-eared	MS 20	0.0

Brown long-eared	MS 7	0.0
Brown long-eared	MS 9	0.0
Common pipistrelle	MS 11	0.1
Common pipistrelle	MS 12	0.3
Common pipistrelle	MS 13	0.2
Common pipistrelle	MS 16	0.1
Common pipistrelle	MS 17	2.6
Common pipistrelle	MS 18	5.0
Common pipistrelle	MS 19	1.6
Common pipistrelle	MS 20	0.3
Common pipistrelle	MS 7	0.0
Common pipistrelle	MS 9	0.2
Myotis	MS 11	0.0
Myotis	MS 12	0.0
Myotis	MS 13	0.0
Myotis	MS 16	0.0
Myotis	MS 17	0.3
Myotis	MS 18	0.1
Myotis	MS 19	0.0
Myotis	MS 20	0.0
Myotis	MS 7	0.0
Myotis	MS 9	0.0
Pipistrellus	MS 11	0.0
Pipistrellus	MS 12	0.0
Pipistrellus	MS 13	0.0
Pipistrellus	MS 16	0.0
Pipistrellus	MS 17	0.4
Pipistrellus	MS 18	3.3
Pipistrellus	MS 19	0.3
Pipistrellus	MS 20	0.0
Pipistrellus	MS 7	0.0
Pipistrellus	MS 9	0.0
Soprano pipistrelle	MS 11	0.1
Soprano pipistrelle	MS 12	0.3
Soprano pipistrelle	MS 13	0.6
Soprano pipistrelle	MS 16	0.9
Soprano pipistrelle	MS 17	4.0
Soprano pipistrelle	MS 18	6.4
Soprano pipistrelle	MS 19	1.6

Soprano pipistrelle	MS 20	0.5
Soprano pipistrelle	MS 7	0.1
Soprano pipistrelle	MS 9	0.1

27 NIGHTLY BAT PASSES (BAT PASSES PER HOUR)

27.1 Per Detector - Figures

Figure 16. Figures show boxplots for the number of bat passes per hour each night, for each detector. The 'box' shows the interquartile range, which is where the middle 50% of the data lie. The line dividing the box is the median, the mid-point of the data. The 'whiskers' extend from the box and represent the ranges for the bottom 25% and the top 25% of the data values, excluding outliers. An outlier is any extreme value that lies further away from the box than 1.5 times the interquartile range. Outliers are shown as dots. Where very few passes are recorded it is not possible to produce the box, so the data are shown as a line.

28 SURVEY EFFORT

Table 24. The number of nights bats were detected per month per detector.

Month	Detector ID	No of Survey Nights
May	MS 12	4
May	MS 13	3

May	MS 16	8
May	MS 17	16
May	MS 18	17
May	MS 19	10
May	MS 20	9
Jun	MS 12	11
Jun	MS 13	10
Jun	MS 16	11
Jun	MS 17	14
Jun	MS 18	14
Jun	MS 19	7
Jun	MS 20	12
Jul	MS 11	6
Jul	MS 12	5
Jul	MS 13	6
Jul	MS 16	5
Jul	MS 17	13
Jul	MS 18	11
Jul	MS 19	8
Jul	MS 20	11
Jul	MS 9	2
Aug	MS 11	6
Aug	MS 12	11
Aug	MS 13	16
Aug	MS 16	7
Aug	MS 17	18
Aug	MS 18	20
Aug	MS 19	16
Aug	MS 20	24
Aug	MS 7	4
Aug	MS 9	3
Sep	MS 12	8
Sep	MS 13	9
Sep	MS 16	11
Sep	MS 18	11
Sep	MS 19	9
Sep	MS 20	21
Sep	MS 7	12
Sep	MS 9	4

Page Break28.1 Nightly Bat Pass Rate for each Month

29 MEDIAN PER DETECTOR

Table 25. The median Nightly Pass Rate (bat passes per hour, per night) of each species throughout each month. If NA, then no bat passes.

Bat pass rates are often highly variable between nights, with some nights having few or no passes and other nights having high activity. In these circumstances, the median is likely to be a more useful summary of the 'average' activity than is the mean. For further information see: *Lintott, P. R., & Mathews, F. (2018). Basic mathematical errors may make ecological assessments unreliable. Biodiversity and Conservation, 27(1), 265-267.* https://doi.org/10.1007/s10531-017-1418-5

Species	Detector ID	Aug	Jul	Jun	May	Sep
Brown long-eared	MS 11	0.0	0.0	NA	NA	NA
Brown long-eared	MS 12	0.0	0.0	0.0	0.0	0.0
Brown long-eared	MS 13	0.0	0.0	0.0	0.0	0.0
Brown long-eared	MS 16	0.0	0.0	0.0	0.0	0.0
Brown long-eared	MS 17	0.0	0.0	0.0	0.0	NA
Brown long-eared	MS 18	0.0	0.0	0.2	0.0	0.0
Brown long-eared	MS 19	0.0	0.0	0.0	0.0	0.0
Brown long-eared	MS 20	0.0	0.0	0.0	0.0	0.0
Brown long-eared	MS 7	0.0	NA	NA	NA	0.0
Brown long-eared	MS 9	0.0	0.0	NA	NA	0.0
Common pipistrelle	MS 11	0.1	0.0	NA	NA	NA
Common pipistrelle	MS 12	0.1	0.3	0.2	0.4	0.0
Common pipistrelle	MS 13	0.0	0.1	0.2	0.3	0.0
Common pipistrelle	MS 16	0.1	0.1	0.0	0.0	0.1
Common pipistrelle	MS 17	0.2	1.6	3.9	0.3	NA
Common pipistrelle	MS 18	2.6	1.6	7.4	2.9	0.3
Common pipistrelle	MS 19	0.2	0.1	1.1	0.3	1.1
Common pipistrelle	MS 20	0.1	0.1	0.2	0.7	0.1
Common pipistrelle	MS 7	0.1	NA	NA	NA	0.0
Common pipistrelle	MS 9	0.2	0.1	NA	NA	0.0
Myotis	MS 11	0.0	0.0	NA	NA	NA
Myotis	MS 12	0.0	0.0	0.0	0.0	0.0
Myotis	MS 13	0.0	0.0	0.0	0.0	0.0
Myotis	MS 16	0.0	0.0	0.0	0.0	0.0
Myotis	MS 17	0.0	0.0	0.7	0.4	NA
Myotis	MS 18	0.0	0.0	0.0	0.3	0.0
Myotis	MS 19	0.0	0.0	0.0	0.0	0.0
Myotis	MS 20	0.0	0.0	0.0	0.0	0.0

Myotis	MS 7	0.0	NA	NA	NA	0.0
Myotis	MS 9	0.0	0.0	NA	NA	0.0
Pipistrellus	MS 11	0.0	0.0	NA	NA	NA
Pipistrellus	MS 12	0.0	0.0	0.0	0.0	0.0
Pipistrellus	MS 13	0.0	0.0	0.0	0.0	0.0
Pipistrellus	MS 16	0.0	0.0	0.0	0.0	0.0
Pipistrellus	MS 17	0.0	0.0	0.0	0.0	NA
Pipistrellus	MS 18	0.0	0.0	0.0	0.0	1.2
Pipistrellus	MS 19	0.0	0.0	0.0	0.0	0.0
Pipistrellus	MS 20	0.0	0.0	0.0	0.0	0.0
Pipistrellus	MS 7	0.0	NA	NA	NA	0.0
Pipistrellus	MS 9	0.0	0.0	NA	NA	0.0
Soprano pipistrelle	MS 11	0.1	0.1	NA	NA	NA
Soprano pipistrelle	MS 12	0.1	0.1	0.2	0.3	0.1
Soprano pipistrelle	MS 13	0.1	0.1	0.5	0.2	0.1
Soprano pipistrelle	MS 16	0.1	0.1	0.4	1.3	0.4
Soprano pipistrelle	MS 17	0.7	2.6	5.6	1.1	NA
Soprano pipistrelle	MS 18	4.6	2.3	2.6	6.3	1.6
Soprano pipistrelle	MS 19	0.3	0.1	1.2	0.4	0.3
Soprano pipistrelle	MS 20	0.3	0.3	0.5	0.4	0.2
Soprano pipistrelle	MS 7	0.0	NA	NA	NA	0.1
Soprano pipistrelle	MS 9	0.0	0.1	NA	NA	0.1

29.1 Nightly Bat Pass Rate for each Month

30 MEAN PER DETECTOR

Table 26. The mean Nightly Pass Rate (bat passes per hour, per night) of each species throughout each month. Values are given to 1 decimal place.

We recommend using the median values given above, for the reasons stated above, but provide the mean values in the table below.

Species	Detector ID	Aug	Jul	Jun	May	Sep
Brown long-eared	MS 11	0.0	0.0	NA	NA	NA
Brown long-eared	MS 12	0.0	0.0	0.0	0.0	0.0
Brown long-eared	MS 13	0.0	0.0	0.0	0.0	0.0
Brown long-eared	MS 16	0.0	0.0	0.0	0.0	0.0
Brown long-eared	MS 17	0.0	0.0	0.1	0.1	NA
Brown long-eared	MS 18	0.0	0.0	0.1	0.2	0.0
Brown long-eared	MS 19	0.0	0.0	0.1	0.0	0.0
Brown long-eared	MS 20	0.0	0.0	0.0	0.0	0.0

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

Brown long-eared	MS 7	0.0	NA	NA	NA	0.0
Brown long-eared	MS 9	0.0	0.0	NA	NA	0.0
Common pipistrelle	MS 11	0.1	0.0	NA	NA	NA
Common pipistrelle	MS 12	0.2	0.2	0.7	0.4	0.1
Common pipistrelle	MS 13	0.3	0.2	0.4	0.3	0.1
Common pipistrelle	MS 16	0.2	0.1	0.2	0.1	0.1
Common pipistrelle	MS 17	0.5	2.4	6.5	1.9	NA
Common pipistrelle	MS 18	4.3	2.2	8.3	6.5	2.7
Common pipistrelle	MS 19	2.2	0.3	1.6	1.4	2.1
Common pipistrelle	MS 20	0.2	0.2	0.7	0.6	0.1
Common pipistrelle	MS 7	0.1	NA	NA	NA	0.0
Common pipistrelle	MS 9	0.4	0.1	NA	NA	0.0
Myotis	MS 11	0.0	0.0	NA	NA	NA
Myotis	MS 12	0.0	0.0	0.1	0.0	0.0
Myotis	MS 13	0.0	0.0	0.0	0.0	0.0
Myotis	MS 16	0.0	0.0	0.0	0.0	0.0
Myotis	MS 17	0.0	0.0	0.8	0.4	NA
Myotis	MS 18	0.0	0.0	0.1	0.3	0.0
Myotis	MS 19	0.0	0.0	0.0	0.1	0.0
Myotis	MS 20	0.0	0.0	0.1	0.0	0.0
Myotis	MS 7	0.0	NA	NA	NA	0.0
Myotis	MS 9	0.0	0.0	NA	NA	0.0
Pipistrellus	MS 11	0.0	0.0	NA	NA	NA
Pipistrellus	MS 12	0.0	0.0	0.0	0.0	0.0
Pipistrellus	MS 13	0.0	0.0	0.0	0.0	0.0
Pipistrellus	MS 16	0.0	0.0	0.0	0.0	0.0
Pipistrellus	MS 17	0.3	1.2	0.0	0.0	NA
Pipistrellus	MS 18	5.9	3.8	0.0	0.0	7.3
Pipistrellus	MS 19	0.0	0.0	0.0	0.0	1.9
Pipistrellus	MS 20	0.0	0.0	0.0	0.0	0.0
Pipistrellus	MS 7	0.0	NA	NA	NA	0.0
Pipistrellus	MS 9	0.0	0.0	NA	NA	0.0
Soprano pipistrelle	MS 11	0.1	0.1	NA	NA	NA
Soprano pipistrelle	MS 12	0.2	0.1	0.3	1.6	0.1
Soprano pipistrelle	MS 13	0.2	0.1	2.0	0.2	0.1
Soprano pipistrelle	MS 16	0.2	0.2	0.8	1.5	1.3
Soprano pipistrelle	MS 17	1.1	2.5	10.1	3.2	NA
Soprano pipistrelle	MS 18	7.5	4.1	7.0	6.8	5.2
Soprano pipistrelle	MS 19	2.2	0.4	1.2	1.9	1.5

Soprano pipistrelle	MS 20	0.4	0.3	0.9	0.8	0.2
Soprano pipistrelle	MS 7	0.0	NA	NA	NA	0.1
Soprano pipistrelle	MS 9	0.0	0.1	NA	NA	0.1

30.1 Nightly Bat Pass Rate for each Month

30.2 Per Detector - Figures

Figure 17. Figures show boxplots for the number of bat passes per hour by detector, for each month. The 'box' shows the interquartile range, which is where the middle 50% of the data lie. The line dividing the box is the median, the mid-point of the data. The 'whiskers' extend from the box and represent the ranges for the bottom 25% and the top 25% of the data values, excluding outliers. An outlier is any extreme value that lies further away from the box than 1.5 times the interquartile range. Outliers are shown as dots. Where very few passes are recorded it is not possible to produce the box, so the data are shown as a line.

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

Detector ID

Earraghail Renewable Energy Development Technical Appendix 8.4: Bats

Page Break**BAT ACTIVITY PER DETECTOR LOCATION**

Page Break

Figure 19. Median Nightly Pass Rate (bat passes/hr/night) throughout the survey period - represented by the size and colour of the point at each detector location.

Figure 20. Maximum Nightly Pass Rate (bat passes/hr/night) recorded in a single night throughout the survey period - represented by the size and colour of the point at each detector location.

Thank you for using Ecobat! If you have any questions please email info@themammalsociety.org.uk